
I
IcDR, No. 0002AC-5 AD-A267 104

System Description Document for the

I Manufacturing Optimization (MO) System

"I"DTIC

Linda J. Lapointe Il ELECTE
Thomas J. Laliberty JUL23 1993
Robert V.E. Bryant A I

I

I E•lylheem Company

I
1993

I s document has been approved
ifOr public elease and sale; its
da= n~iir is unlimited

I DARPA
Defense Advanced Research

Projects Agency

I
I , .93-16572 •/

I

I CDRL No. 0002AC-5

I

I System Description Document for the

I Manufacturing Optimization (MO) System
I
I Prepared by 3

Linda J. Lapointe

Thomas J. Laliberty

Robert V.E. Bryant Accesion For

NTIS CRA&I
DTIC TAB (2

3.ayl... Company B -tc:
Missile Systems Laboratories D; J

Tewksbury, MA 01876

July 1993 Dist

IARPA Order No. 8363/02
Contract MDA972-92-C-0020

I Prepared for

I DARPA
Defense Advanced Research

* Projects Agency

Contracts Management Office
Arlington, VA 22203-1714

I
I

I

I Contents

I 1. Scope .. 1

1.1 Identification .. I

1.2 System Overview ... 1

1.3 Definition of Key Terms .. 21 1.4 Document Overview 5

2. Referenced Documents .. 61 3. Manufacturing Optimization System ... 7

3.1 MO Overview .. 7
3.2 MO Architecture ... 9

3.3 MO System Description .. 12

3.3.1 External Interfaces ... 12

3.3.1.1 Project Coordination Board 12

3.3.1.2 Requirements Manager 14

3.3.1.3 RAPIDS 15

3.3.2 Product (STEP) Models .. 16

3.3.3 Process Models .. 17

3.3.4 Manufacturing Analyzer .. 20

3.3.4.1 Process Analyzer 20

3.3.4.2 Yield & Rework Analyzer 21
3.3.4.3 Cost Estimator .. 213 3.3.5 Manufacturing Advisor .. 22

3.3.6 Process Modeler ... 23

4. User Interface Screens ... 26

4.1 File Menu .. 26

4.1.1 Product/STEP Data Selection 27

4.1.2 Process Model Selection .. 27
4.1.3 RAPIDS to STEP Translator Interface 28

4.1.4 STEP to RAPIDS Translator Interface 29

4.2 Analyzer Form .. 301 4.3 Advisor Window .. 30

4.3.1 Select Analysis Runs .. 311 4.3.2 Process Graph Display 31

4.3.3 Q uality G raphs ... 33

i
!i

I • • • • • • • l mlll l

3 4.3.3.1 Yield Graphs 34
4.3.3.2 Rework Graphs ... 35

4.3.3.3 Production Quantity Graphs 35

4.3.4 Costing Graphs ... 36

4.3.4.1 Time/Cost Graphs 36

4.3.4.2 Cost Detail Graphs 37

4.3.5 Analysis Reports Form .. 37

4.4 Modeler Window ... 39

4.4.1 Manufacturing Activity Node Definition 413 4.4.2 Selection Rules Definition 42

4.4.3.1 Yield Rate Definition 433 4.4.3.2 Rework Rate Definition 44

4.4.4 Resource Definition ... 45

5. C++ Header File Definitions .. 50

5.1 ProductD esign ... 51

5.2 ProcessModel .. 55
5.2.1 ProcessModel Specification 55

5.2.2 MfgSpec Specification .. 57
I 5.2.3 Process Specification 59

5.2.4 Operation Specification .. 61

5.2.5 Step Specification .. 62
5.2.6 Quality Specification ... 63

5.2.7 Scrap Specification .. 65

5.2.8 Rework Specification ... 66
5.2.9 Cost Specification ... 673 5.2.10 ResourceUtilization Specification 69
5.2.11 Parameter Specification .. 713 5.2.12 ResourceRates Specification 72
5.2.13 Resource Specification .. 73

5.2.13.1 Equipment Specification 74

5.2.13.2 ConsumableMaterial Specification 75

5.2.13.3 ResourceConsumable Specification 76

5.2.13.4 Labor Specification ... 77
5.2.13.5 Facility Specification 783 5.2.14 ReasoningLogic Specification .. 79

5.2.15 Rules Specification ... 80I
I

5
5.2.16 Expression Specification ... 81

5.2.17 ompleExp Specification........................ 8

5.2.19 Equation Specification .. 85

5.2.20 ComplexTerm Specification .. 86

5.2.21 ComplexEquation Specification 87

5.2.22 ParenEquation Specification .. 88

I 5.2.23 Term Specification .. 90

5.2.24 Const Specification .. 91

3 5.2.25 Addition/Subtraction Specification 92

5.2.26 Multiplication/Division Specification 93

5.2.27 Unary-Op Specification .. 93

5.2.28 EquivOp Specification ... 93

5.2.29 StringValue Specification ... 93

5.2.30 DataDictStr Specification ... 94

5.2.30.1 EntityName Specification 95

I 5.2.30.2 EntityAttrName Specification 96

5.3 Analyzer .. 97

5.4 Advisor .. 98

5.5 Modeler ... 99

6. Database EXPRESS Schemas .. 101

6.1 Process Model Schema Specification ... 101

i 6.1.1 EXPRESS Schema for Process Model 102

6.1.1.1 ProcessModel Entity 103

6.1.1.2 MfgSpec Entity ... 1033 6.1.1.3 Process Entity ... 104

6.1.1.4 Operation Entity ... 105

6.1.1.5 Step Entity 105

6.1.1.6 Scrap Entity ... 1063 6.1.1.7 Rework Entity ... 106

6.1.1.8 Cost D ata .. 107

6.1.1.9 Q uality Data ... 107

6.1.1.10 ReasoningLogic Entity 108

6.1.2 EXPRESS-G Schema for Process Model 1083 6.1.3 EXPRESS Schema for Resource 109

6.1.3.1 ResourceUtilization Entity 110

I
ivI

I
1 6.1.3.2 Resource Entity ...

6.1.3.3 Parameter Entity .. 111

I 6.1.3.4 Labor Entity ... 112

6.1.3.5 Equipment Entity ... 112

6.1.3.6 Facility Entity ... 112

6.1.3.7 ConsumableMaterial Entity 113

6.1.3.8 ResourceRates Entity 114

6.1.4 EXPRESS-G Schema for Resource 114

6.1.5 EXPRESS Schema for Selection Rules 115£ 6.1.5.1 Constants and Types for Rule Construction 117

6 1.5.2 DataDictStr Entity ... 1183 6.1.5.3 Rules Entities .. 119

6.1.5.4 Expression Entities 119

6.1.5.5 Equation Entities .. 120

6.1.5.6 Term Entities .. 120
6.1.5.7 ComplexTerm Entities 121

I 6.1.6 EXPRESS-G Schema for Selection Rules 122

6.2 Product Model Schema Specification ... 1233 6.2.1 Printed Wiring Board Product Data Model 123

6.2.1.1 PWB Design Schema 124

6.2.1.2 PWB Generic Types and Entities 126

6.2.1.3 Header Data Schema 127

6.2.1.4 Alias Data Schema .. 128

6.2.1.5 Annotation Data Schema 128

6.2.1.6 CARl Data Schema ... 129

6.2.1.7 Class Data Schema ... 129

6.2.1.8 Comment Data Schema 130

I 6.2.1.9 Design Rule Data Schema 130

6.2.1.10 Gate Data Schema .. 1333 6.2.1.11 Net Data Schema .. 134

6.2.1.12 Metal Area Data Schema 136

6.2.1.13 Part Data Schema ... 136

6.2.1.14 Pin Data Schema .. 139

6.2.1 .15 Conductor Routing Data Schema 1403 6.2.1.16 Via Data Schema .. 141

6.2.1.17 Library Cross Reference Data Schema 141

I
I

I

6.2.2 PWB Design Data EXPRESS-G Model 142

6.2.3 Electronic Component Library Data Model 1431 6.2.3.1 Component Model Data Schema 143

6.2.3.2 Pad Stack Data Schema 145

6.2.3.3 Pad Shape Data Schema 145

6.2.4 Electronic Component Library Data EXPRESS-G Model 146

7 . N otes ... 147

I 7.1 Acronyms ... 147

I
I
I
I
I

I
I
I
I
I
I

I vi

Ia a • •

I

I Figures and Tables

i Figure 1.2-1 Two Level Team Concept ... 2

Figure 3.1-1 MO External Interfaces ... 7

I Figure 3.2-1 MO System Architecture .. 10
Figure 3.2-2 Process Modeler Block Diagram ... 11
Figure 3.2-3 Manufacturing Analyzer Block Diagram ..

Figure 3.2-4 Manufacturing Advisor Block Diagram 123 Figure 3.3-1 Sample PWB Design Cycle Flow .. 14

Figure 3.3-2 Printed Wiring Board Manufacturing Flow 18

Figure 3.3-3 Printed Wiring Assembly Process Model 20

Figure 3.3-5 Sample Yield versus Process Comparison Graph 23

Figure 3.3-6 Process Modeler User Interface Window 253 Figure 4-1 MO Main Window ... 26

Figure 4. 1-1 File Options ... 26

Figure 4.1-2 Product Data Selection/Edit Menu ... 27
Figure 4.1-3 Process Model Selection Menu .. 28

Figure 4.1-4 RAPIDS to STEP Data Flow .. 28

Figure 4.1-5 RAPIDS to STEP Form ... 29

Figure 4.1-6 STEP to RAPIDS Data Flow .. 29
Figure 4.1-7 STEP to RAPIDS Form ... 30
Figure 4.3-1 Manufacturing Advisor Window .. 313 Figure 4.3-2 Process Graph ... 32

Figure 4.3-3 Process Results Viewing Form .. 33

Figure 4.3-4 Quality Graphs 33

Figure 4.3-5 Yield versus Process Graph ... 34

Figure 4.3-6 Yield versus Process Comparison Graph 35

Figure 4.3-7 Production Quantity versus Process Graph 36
Figure 4.3-8 Cost Details Graph for Process ... 37
Figure 4.3-9 Analysis Reports Form ... 38
Figure 4.4-1 Process Modeler Window .. 403 Figure 4.4-2 Process Model Selection Window .. 41

Figure 4.4-3 Manufacturing Activity Specification Window 423 Figure 4.4-4 Selection Rules Window 42

Figure 4.4-5 Rule Specification .. 43

I
viiI

I

Figure 4.4-6 Yield Specification Window .. 44
Figure 4.4-7 Rework Specification Window ... 45

Figure 4.4-8 Resource Utilization Window ... 46
Figure 4.4-9 Resource Window ... 46
Figure 4.4-10 Resource Specification Window .. 47
Figure 4.4-11 Facility Resource Specification Window 47
Figure 4.4-12 Equipment Resource Specification Window 48

Figure -4.4-13 Resource/Consumable Specification Window 48

Figure 4.4-14 Labor Resource Window .. 49

Figure 4.4-15 Labor Rate Resource Specification Window 49
Figure 5-1 Top-Level Class (Categories) Diagram 50
Figure 6.1-1 EXPRESS-G Model of Process Model Schema 109
Figure 6.1-2 EXPRESS-G Model of Resources Schema 115
Figure 6.1-3 EXPRESS-G Model of Selection Rules Schema 122
Figure 6.2-1 PWB Schema Level EXPRESS-G Model 142
Figure 6.2-2 Component Data EXPRESS-G Schema ... 146

v
l
I
I
I
l

vii

I

UNCLASSIFIED

CDRL No. 0002AC-5

1. Scope

1.1 Identification

I This is the System Description Document for the Manufacturing Optimization (MO)

System. The development activities are being performed under Defense Advanced Research

1 Projects Agency (DARPA) funding, contract number MDA972-92-C-0020, by the MO

Development Team. The Development Team is comprised of personnel from Computer Aided

Engineering Operations (CAEO) of the Raytheon Missile Systems Laboratories (MSL) with

participation from the MSL Mechanical Engineering Laboratory (MEL) and the Missile

1 Systems Division (MSD) West Andover Manufacturing facility.

1.2 System Overview

DICE has developed a concurrent engineering model that replicates the human tiger team

concept. The basic tenet of the human tiger team is to have the various specialists contributing

to the project co-located. In today's environment of complex product designs and

I geographically dispersed specialists, DICE envisioned a "virtual tiger team" working on a
"unified product model" accessible by computer networks. Such an environment must enable

specialists from each functional area to work on the design concurrently and share development

ideas.

Raytheon proposed a conceptual refinement to the original DICE virtual tiger team. This

refinement is a two level approach with a product virtual team having a global view supported

by information supplied by lower level "specialized" process virtual teams. See Figure 1.2-1.

This refinement is needed because of the growing complexity of our products and supporting

I development processes, which make it difficult for one individual to adequately comprehend all

of the complexities required to establish a unified manufacturing position. The "virtual process

I team" concept would allow comprehensive representation from each specialized process area

to contribute to the formulation of the final manufacturing recommendations.I
1
I
I

UNCLASSIFIED
CDRL No. 0002AC-5

GLOBAL PRODUCT VIRTUAL TEAM

Test

Design Product Quality

SPECIALIZED PROCESS TEA,

Cable/Harness
MFG Support

Sheet
Metal Consolidated

DesignManufacturing
Position

Printed Wiring Boar Circuit Carc
Fabrication Assembly

1 Figure 1.2-1 Two Level Team Concept

The purpose of the Manufacturing Optimization (MO) system is to enable all manufacturing

I specialists to participate in the product/process development activity concurrently. The system

consists of a set of tools to model the manufacturing processes and centralize the various

I process tradeoffs. Recommendations can be compared and negotiated among the individual

manufacturing participants. After the manufacturing team has reached a consolidated position,

the re,%dits are passed back to the cross functional (top level) team for their negotiation.

I 1.3 Definition of Key Terms

Communications Manager (CM) - a collection of modules developed as part of the DICE
I program which facilitate distributed computing in a heterogeneous network.

Consolidated Manufacturing Position - recommendations from the manufacturing
process team. The recommendations are in the form of product design changes.

Hierarchical Planning System - a tree structure breakdown defined such that each node in
the tree has a parent node and possible children nodes. The hierarchical structure
defines the generalization-specialization breakdown of manufacturing processes. In
MO, the nodes in the tree represent individual manufacturing activities which point at
three types of possible manufacturing data, The three data types are processes.

I2
I

UNCLASSIFIED
CDRL No. 0002AC-5

operations, and steps. Each node in the tree contains an ordering flag which defines
the children nodes as sequential or concurrent activities. For a particular activity to be
included in the overall manufacturing process for a particular product, its reasoning
logic must be satisfied.

Manufacturing Advisor - a MO core module which provides the user with various methods
to view the results produced by the Manufacturing Analyzer. Results can be viewed
via graphing functionality or through textual reports.

Manufacturing Analyzer - a MO core module which provides the following three services:
1. Selection of individual proce-ses from the process model which are used to
manufacture a particular product; 2. Analysis of the processes selected and the
operations attached to each process to estimate scrap and rework rates: 3. Analysis of
the resources needed to perform the operations attached to the selected processes for
cost.

Operation - a unit of work performed on the part. Associated with each operation are scrap
rates, rework rates, and required resources.

Project Coordination Board (PCB) - a DICE tool supported by CERC that provides
support for the coordination of the product development activities in a cooperative
environment. It provides for common visibility into the design task structure, task
assignment capabilities, and change notification capabilities.

Process - an organized group of manufacturing operations sharing characteristics.

Process Model - the specification of the total manufacturing process required to produce the
product. The process model consists of a hierarchical tree structure of individual
manufacturing activities.

Process Modeler - a MO core module which provides the user with the ability to graphically
model processes, operations, steps and resources.

Process Team - the lower level specialized team in the two-tiered team concept. The process
team is responsible for providing a consolidated position in terms of their
specialization. The users of the MO system would be part of the manufacturing
process team and would be required to provide a consolidated manufacturing position
to the global level product team.

Product Model - a set of STEP entities that define the features and attributes of the product.
The Process Modeler provides a means of defining rules and equations in terms of the
existence, count, or value of particular product model entity instances.

Product Team - the global level team in the two-tiered team concept. The global team is
supported by all of the specialized process teams.

PWB - Printed Wiring Board.

RAPIDS - Raytheon Automated Placement and Interconnect Design System. Raytheon's
conceptual design and analysis workstation for Printed Wiring Boards (PWB).
RAPIDS supports component placement and placement density analysis, as well as a
number of other analysis functions, including automatic component insertion
checking. Interfaces between RAPIDS and the PWB analysis tools for the following

3

I UNCLASSIFIED
CDRL No. 0002AC-5

3 criteria are also provided as part of the RAPIDS tool suite: Manufacturing, Post
Layout Effects, Reliability, and Thermal.

Rapids to STEP - a C++ application which utilizes the ROSE database and tools developcd
by STEP Tools, Inc. The program reads the RAPIDS database using the RAPIDS
Procedural Interface. A persistent STEP object of the appropriate class is generated
for each RAPIDS record read. The object is then stored as a STEP entity in a physical
STEP file.

Resource - any facility, labor, equipment, or consumable material used in the manufacturing
process.

Rework Rate - the percentage of product parts which must be reworked due to an operation.
Rework data is maintained in a list of rework entities. In each entity there is a rework
rule and a corresponding rework rate. If the rework rule is satisfied, then the
corresponding rework rate is computed. There is a list of resources associated with

i the rework which is used to calculate the cost of performing the rework operation.

Requirements Manager (RM) - Product Track Requirements Manager (CIMFLEX
Teknowledge) is a software tool designed to manage product requirements and
evaluate the compliance of product design data with requirements.

ROSE - Rensselaer Object System for Engineering is an object-oriented database management
system developed at Rensselaer Polytechnic Institute. It has been developed to
support engineering applications as part of the DICE program. ROSE is currently part
of the STEP Programmer's Toolkit available from STEP Tools, Inc. ROSE is a
database which supports concurrency using a data model that allows the differences
between two design versions to be computed as a delta file. The MO data for the
manufacturing processes and operations, as well as the various analysis results, will
be stored and managed within ROSE.

I Step - An elemental unit of work within an operation.

STEP - STandard for the Exchange of Product model data is the International Standards
Organization standard 10303. The objective of the standard is to provide a mechanism
capable of representing product data throughout the life cycle of a product,
independent of any particular system. STEP data is stored as instances of class
entities.

STEP to Rapids - a C++ application which utilizes ROSE and tools developed by STEP
Tools, Inc. The program reads a STEP file conforming to the EXPRESS schemas
that model the PWB product data. The ROSE STEP filer is used to read the STEP file
into instances of classes created by the express2c++ compiler. The class instance is
then transformed into the appropriate RAPIDS data record and stored to the RAPIDS
database.

Yield Rate - one hundred minus the percentage of product parts that must be scrapped due to
an operation. Yield data is rr.uintained in a list of yield entities. In each entity there is a
yield rule and a corresponding yield rate. If the yield rule is satisfied, then the
corresponding yield rate is computed.

!4
I

I UNCLASSIFIED

CDRL No. 0002AC-5

1 1.4 Document Overview

3 The purpose of this report is to provide a detailed description of the Manufacturing

Optimization (MO) Software System. It contains the system overview, description and use, the

3 user interface screens, the C++ header file definitions for the pertinent class and objects, and

the product and process schema specifications for MO.

3 The system description discusses the capabilities and interfaces provided in the MO system.

The user interface screens present the look and feel of the system to the user, and the C++

£ header files and schema specification provide the details of the data and methods behind the

classes and objects in the system.

I5

I
I
I
I
I

I
I
U
I
U
*!

I

I UNCLASSIFIED

CDRL No. 0002AC-5

3 2. Referenced Documents
1. BR-20558-1, 14 June 1991, DARPA Initiative In Concurrent Engineering (DICE)

Manufacturing Optimization - Volume I - Technical.

2. CDRL No. 0002AC-1, March 1992, Operational Concept Document For The
Manufacturing Optimization (MO) System, Contract No. MDA972-92-C-0020.

3. CDRL No. 0002AC-2, March 1992, Description of CE Technology For The
Manufacturing Optimization (MO) System, Contract No. MDA972-92-C-0020.

4. CDRL No. 0002AC-3, May 1992, Functional Requirements and Measure of
Performance For The Manufacturing Optimization (MO) System, Contract No. MDA972-
92-C-0020.

5. Object-Oriented Analysis, Second Edition by Peter Coad/Edward Yourdon, Yourdon
Press Computing Series, 1991.1 6. Object-Oriented Design, by Peter Coad/Edward Yourdon, Yourdon Press Computing
Series, 1991.

7. Object Oriented Design with Applications by Grady Booch, The Benjamin/Cummings
Publishing Company, Inc., 1991.

8. Product Data Representation and Exchange-Part 11: The EXPRESS Language Reference3 Manual, ISO DIS 10303-11, National Institute of Standards and Technology, 1992.

9. ProductTrack Requirement Manager User Guide and Reference. Release 1.02 for Sun
SPARC and Oracle RDBMS, Cimflex Teknowledge Corporation, October 1992.

10. RAPIDS Database Data Dictionary. RAYCAD Document #1266021, Raytheon
Company, November 22, 1991.

11. STEP Programmer's Toolkit Reference Manual. STEP Tools Inc., 1992.

12. STEP Programmer's Toolkit Tutorial Manual, STEP Tools Inc., 1992.

3 13. STEP Utilities Reference Manual, STEP Tools Inc., 1992.

14. User Manual for the Project Coordination Board (PCB) of DICE (DARPA Initiative in
SConcurrent Engineering, July 10, 1992.

6

I

I UNCLASSIFIED

CDRL No. 0002AC-5

* 3. Manufacturing Optimization System

1 3.1 MO Overview

gIThe concept behind the Manufacturing Optimization (MO) system is to facilitate a two tiered

team approach to the product/process development cycle where the product design is analyzed3 by multiple manufacturing engineers and the product/process changes are traded concurrently

in the product and process domains. The system supports Design for Manufacturing and

I Assembly (DFMA) with a set of tools to model the manufacturing processes and manage

tradeoffs across multiple processes. The lower level "specialized" team will transfer their3 suggested design changes back to the top-level product team as the Manufacturing Team's

consolidated position.

1 The external software packages which the MO system is comprised of are the ROSE DB,

Requirements Manager, and the Project Coordination Board/Communications Manager. For

3 demonstration purposes, an interface was developed between Raytheon Automated Placement

and Interconnect Design System (RAPIDS) and the ROSE DB. Figure 3.1-1 illustrates the

i external interfaces to the MO system.

Requirements Coordination
Manager Board

(RM) (PCB)

Comuniatonsito

Mananufacturing

Manufacturing Manufacturablity

Engineer O e

Figur 3.1- MeyEtem nlItrae

I
I

Prdc
Figur 3.1- MO EternaDantebace

3lnee

7

I UNCLASSIFIED
CDRL No. 0002AC-5

3ROSE is an object-oriented database management system that has been developed for

engineering applications and enhanced to support the DICE program. ROSE is currently part of

3 the STEP Programmer's Toolkit from STEP Tools, Inc. ROSE is a database which supports

concurrency using a data model that allows the differences between two design versions to be

computed as a delta file. The MO data for the manufacturing activities, as well as the various

analysis results are being stored and managed within ROSE. The manufacturing activity data3 consists of the process selection knowledge base, process, operation, and step data, yield and

rework data, and resource specifications.

I The Requirements Manager (RM) is a software tool designed to manage product

requirements and evaluate the compliance of product design data with requirements. The

I purpose of integrating the RM into the MO system is to provide the "top level" product

development team insight into manufacturing requirements. It is common practice for a1 manufacturer to document manufacturability, or producibility guidelines which delineate

standard manufacturing practices and acceptable design parameters. The purpose of these

3 guidelines is to communicate the capabilities of the manufacturing process to the product design

community to ensure that new product designs are specified within manufacturing capabilities.

5 The guidelines delineate quantitative and qualitative producibility issues. The current plan is for

the RM and the MO software to be coupled through the RM's Application Programming

5 Interface (API) to provide the user with a manufacturing guidelines analyzer capability.

The Project Coordination Board (PCB) provides support for the coordination of the

product development activities in a cooperative environment. It provides common visibility and

change notifications. The Communications Manager (CM) is a collection of modules that

facilitates distributed computing in a heterogeneous network. The Communication and

Directory Services provided in the CM module are required to utilize the PCB. The PCB/CM

are being used in MO to support the communication of the product/process development

activities. There is no direct interface between the MO software modules and the PCB/CM

applications. It is being used to manage the product task structure only.

3 RAPIDS is Raytheon's conceptual design and analysis workstation for Printed Wiring

Boards (PWB). RAPIDS supports component placement and placement density analysis, as3 well as a number of other analysis functions, including automatic component insertion

checking and thermal analysis.

8U

3 UNCLASSIFIED
CDRL No. 0002AC-5

* 3.2 MO Architecture

3 MO is a X-Windows based tool. The application software is written in C and C++, the

Motif user interface was developed using the UIM/X User Interface Management System, and

all data is being stored in STEP physical files.

The decision to use STEP physical files for the underlying data format for the MO system

3 stems from the fact that STEP is the emerging international standard for data exchange between

automation systems. Access to these STEP files is provided through the STEP Programmer's5 Toolkit from STEP Tools Inc. The Toolkit provides a means of reading and writing STEP

entity instances through a C++ class library.

I The MO core system is composed of three software modules, Manufacturing Analyzer,

Manufacturing Advisor, and Process Modeler. The Project Coordination Board (PCB) and

Communications Manager (CM) from Concurrent Engineering Research Center (CERC),

ProductTrack Requirements Manager (RM) from Cimflex Teknowledge, the ROSE database

from STEP Tools Inc., and the two way interface to the Raytheon Automated Placement and

Interconnect Design System (RAPIDS) complete the software suite which constitute the MO

I system. Figure 3.2-1 illustrates the MO System Architecture.

I9

I

I
I
I
I
I

9I

3 UNCLASSIFIED
CDRL No. 0002AC-5

C RAPIDS DB RM

DESIGN Mfg
SYSTEM Guideline

DB Analyzer

£CAD ROSE to RAPIDS Product Track-RM product data
Interfaco R API exchange

PCB/CMROED

R vlSTEP Format

0
D
U
C Mfg Process Data Mfg Analysis Results
T * process model - selected process flows
I- yield & rework data - yield & rework results per opno
P time & cost data * time & cost results per opno

R * resources V1 ~ -suggested mf chan esa v2
E
S

C
M Process Modeler Mfg Analyzer

MSupport: Process Analyzer• graphical building of Selects a process sequence
U process model based on actual part entities

N * easy entry of process and attributes.
selection knowledge-Y/R data entry

C - costing data entry Cs siao

3 N * g~-raphicll diplen grsls proeration IAta
-final Mfg position reportTi eC s

MO CORE SYSTEM

Figure 3.2-1 MO System Architecture

The Process Modeler provides the user with the ability to model processes and resources
required to manufacture a product. Each process is modeled as a set of operations, where an

1
10I

I UNCLASSIRED

CDRL No. 0002AC-5

operation is a unit of work performed on the product part. Each operation is modeled as a set of

operational steps, where a step is an elemental unit of work within an operation. Yield and

rework rates are defined for each operation. The output of the Process Modeler is a hierarchical

tree structure of individual manufacturing activities which point at either process, operation, or

i step data. Figure 3.2-2 depicts a block diagram of the Process Modeler.

Process
Modeler

i 7 1
Manufacturing Resource

Activity Modeler
Modeler

Figure 3.2-2 Process Modeler Block Diagram

The Manufacturing Analyzer provides the following three services: 1. Select the individual

activities from the process model that are used to manufacture a particular product. 2. Analyze

the processes, operations, and steps to estimate scrap and rework rates. 3. Analyze the

resources attached to the selected processes, operations, and steps for cost. The analyzer

results are composed of design feature entities from the product design database (STEP file)

along with the selected manufacturing processes from the user specified process model. Figure1 3.2-3 depicts a functional block diagram of the Manufacturing Analyzer.

Manufacturing3 Analyzer

IF
SProcess Yield &, Rework Cost

Analyzer Ana lyzer Estimator

Figure 3.2-3 Manufacturing Analyzer Block Diagram

The Manufacturing Advisor provides the user with various methods to view the results

produced from the analyzer. The results can be viewed graphically (i.e. line, bar, stacked bar

and pie charts) or textually. The reporting capability allows the user to customize a detailedI
11I

I UNCLASSIFIED

CDRL No. 0002AC-5

3 report which can be printed to the screen or to an ASCII file. MO allows the user to view one

or more sets of analysis results at a time. By selecting multiple analysis runs to graphically

3 display, the user can visually compare the analyses. Figure 3.2-4 shows a functional block

diagram of the Manufacturing Advisor.

I Manufacturing
Advisor

F IIII

Graph/Charts Report/Text

I
Process Yield & Rework Time/Cost

Flow Results Results

Figure 3.2-4 Manufacturing Advisor Block Diagram

3 3.3 MO System Description

3.3.1 External Interfaces

3.3.1.1 Project Coordination Board

The Project Coordination Board (PCB) is a system developed to provide support for the

coordination of the product development activities in a cooperative environment. The PCB

provides common visibility and change notification through the common workspace, planning

and scheduling of activities through the task structure, monitoring progress of product

development through the product structure (i.e. constraints), and computer support for team

structure through messages. The Communications Manager (CM) is a collection of modules

that facilitates distributed computing in a heterogeneous network. It promotes the notion of a

virtual network of resources which the project team members can exploit without any prior

knowledge of the underlying physical network. The Communication and Directory Servicesg provided in the CM module are required to utilize the PCB.

i
12I

3 UNCLASSIFIED

CDRL No. 0002AC-5

MO introduces the concept of a two tiered virtual tiger team. The two tiered approach

consists of a cross functional product team linked to teams within each of the functions, in

this case a manufacturing process team. To implement this approach there must be

communication among the members of each team, and between the product and process team.

The PCB/CM is being used to support the following capabilities which are required for this

type of communication:

U * Product - to - Process Team Communication

"* Notification of design task completed.5 * Notification and issuance of database available for analysis.

"* Notification of alternative designs or trade-off decisions under consideration.

3 • Process - to - Product Team Communication

"• Notification and issuance of analysis results.

• Notification and issuance of modified database with recommended changes.
"• Notification of changes to the process, guidelines, cost or yield models.

I We are using the product task structure within the PCB/CM to model the product to process

development team communication. Included in this task structure are major design steps, such

as concept development, design capture, design verification, component placement, routing,

transition to production, and several design reviews. The design reviews included3 representatives from design, test, reliability, manufacturing, and thermal. Figure 3.3-1 is a

high level view which represents the design cycle steps which model a typical PWB product

3 design cycle.

1
i
U
I
U
I

13I

U UNCLASSIFIED

CDRL No. 0002AC-5

Design Design
Capture Analysis/

DesigneviewVerification

Concept •Mfg
I ~~Design Testi~lt

•Th~ermal

Review Mfg
Parts List [i iAuto Insertability

Design Review
Cpe Designer Documentation/
Placement fgInterconnect Final oard Transition To

P mTest Routing Review Manufacturing

Reliability*Thermal

Figure 3.3-1 Sample PWB Design Cycle Flow

3 The Project Lead (user with special privileges) initializes the product task structure. The

Project Lead can then view any task or work order that appears in the network, add a task to3 the existing network, acknowledge receiving a task, and indicate completion of a task. The

other team members can acknowledge receiving a task and indicate completion of that task. The3 PCB automatically dispatches tasks as previous tasks are completed. Also, the Project Lead can

dispatch a task. Refer to Section 2 reference 14 for details on the PCB.

1 3.3.1.2 Requirements Manager

The Requirements Manager (RM) is a software tool designed to manage product
requirements and evaluate the compliance of product design data with requirements. The tool

allows the user to model requirements or guidelines, model the product design data structure,

populate the product design data structure with product data, and evaluate to what extent the

product design data meets the specified requirements. As a result of the evaluation process, the

tool will provide the user with a status (Pass, Fail, Uncertain, or Untested) of the compliance

of the product data with the requirements. The MO manufacturing guideline functionality is

being incorporated into the RM to provide the "top level" product development team insightg into manufacturing requirements apart from the MO analyses.

I
14I

I UNCLASSIFIED
CDRL No. 0002AC-5

I It is common practice for a manufacturer to document manufacturability, or producibility

guidelines that delineate standard manufacturing practices and acceptable design parameters.

3 The purpose of these guidelines is to communicate the capabilities of the manufacturing process

to the product design community to ensure that new product designs are specified within

I manufacturing capabilities. The guidelines delineate quantitative and qualitative producibility

issues.

I The MO system is supporting evaluation of these manufacturing guidelines. For each

guideline entry there is a related recommendation. Unlike the process selection constraints,

manufacturability guideline violations may not cause alternative selection. The result could be

an operation cost increase, for instance, the need for non-standard tooling, a yield loss, or a

I less tangible impact. These guidelines will be entered into the Requirements Manager so that

they are available to the product design team along with the other requirements placed on the

design. Some examples of these guidelines include: "The maximum board dimension must be

less than 14 inches", "Switches must be hermetically sealed", or "If the number of leads is less

I than or equal to 24 the span should be 0.3 inches". See reference 9 in section 2 for details on

the RM.

3.3.1.3 RAPIDS

RAPIDS is Raytheon's conceptual design and analysis workstation for Printed Wiring

Boards (PWB). RAPIDS supports component placement and placement density analysis, as

Swell as a number of other analysis functions, including automatic component insertion

checking. Interfaces between RAPIDS and the PWB analysis tools for the following criteria9 are also provided as part of the RAPIDS tool suite:

- Manufacturing

3 * Post Layout Effects

• Reliability

I - Thermal

At Raytheon, RAPIDS is used for conceptual design and analysis of PWB's. RAPIDS

I serves in the same capacity at Raytheon that many commercial CAD systems (e.g. Mentor

Board Station, Racal-Redac Visula, Cadence, etc.) are used in at other companies. RAPIDS

provides an Application Programmatic Interface (API) with its database. This enables RAPIDS

to be easily interfaced with other systems and standards. Using RAPIDS in the MO system is

1
15I

I UNCLASSIFIED

CDRL No. 0W02AC-5

if inline with Raytheon methodologies, but does not exclude interfacing MO with commercially

available CAD systems in the future. The key to interfacing MO with a large base of CAD3 systems is the utilization of thw STEP standard by the commercial CAD industry. See reference

10 in section 2 for details on the RAPIDS Data Dictionary.

1 3.3.2 Product (STEP) Models

5 All data required for the MO system is stored in STEP physical files. The reason behind the

use of STEP physical files is that STEP is the emerging international standard for the exchange5 of data between automation systems. Access to the STEP files is provided through the STEP

Toolkit (STEP Tools Inc.). The Toolkit provides a means of reading and writing STEP entity

instances through a C++ class library. This class library is currently being updated to adhere to

the ISO Part 22 SDAI (Standard Data Access Interface) specification.

If At Raytheon, PWB product data is stored in the RAPIDS (Raytheon's Automated

Placement and Interconnect Design System) database. Two interfaces were developed to3 support the transition of PWB product data to and from STEP physical files.

Generating the STEP physical file is facilitated by the RAPIDS to STEP interface which

maps RAPIDS data items into instantiated STEP entities. An information model using the

EXPRESS information modeling language was created based on the RAPIDS database. The

EXPRESS information model was compiled using the STEP Tools express2c++ compiler,

which generated a STEP schema and a C++ class library. The class library consists of methods

for creating and referencing persistent instances of the STEP entities which are stored in a

ROSE database. The STEP schema is used by the STEP Tools STEP filer for reading and

writing the STEP physical file.

5IThe MO system uses the STEP data directly, as well as, for information exchange between

the members of the product design team. For demonstration purposes, we will have the top3 level team using RAPIDS. This is not a requirement for using the MO system. The only

requirement is that the top level team and the lower level teams be capable of creating,

* exchanging and using the STEP physical file.

The Manufacturing Team passes back a consolidated manufacturing position to the product

design team. To aid in the generation of a consolidated position, conflict resolution and design

merging must be supported. This is done using the STEP Toolkit from STEP Tools Inc. The

1
16I

I UNCLASSIFIED
CDRL No. 0002AC-5

3 diff tool reads two versions of a design and creates a delta file. The difference report generator

reads the difference file and the original design, and presents each STEP entity and its attribttes3 with the original values and its change state clearly marked with an asterisks.

Once the conflicts of the Manufacturing team members have been resolved, design versionsIa are merged using the STEP Tools sed tool. The sed tool reads the delta file created by the diff

tool and updates the original design version. This updated version of the design will be

transferred back to the top-level product team as the Manufacturing Team's consolidated

m position.

3.3.3 Process Models

I The key to performing manufacturability analysis is to characterize the fabrication and

assembly processes. In MO, this characterization is implemented as a manufacturing process

representation and selection algorithm. Basing manufacturing cost analysis on a detailed

description of the process provides visibility into the relationship between the design attributes

I• and the manufacturing process. This allows the engineer to focus on manufacturing cost

drivers and their causes. By characterizing the process in this man !r, the manufacturing

if engineer is able to review the process which will be used to produce the product and be readily

able to consider alternative manufacturing processes and their consequences.

-- Following this logic, it makes sense to capture the expert's process planning knowledge

into a process selection model so that the relationship between the product entities and the

process selected to fabricate the product is explicitly defined. This does not mean that there is a

one to one relationship between the design entities and the process steps. In some areas, such

as PWB, the design may be implemented using different technologies, each of which implies a

certain process, such as surface mount versus through-hole technology. In other cases, there

are multiple processes that can be used to produce the same entity. This is most prevalent in the

metal fabrication (machining) area wh.l'e often a number of processes (investment casting,

milling) are capable of producing the part.

5 There were two development challenges: building a data schema to represent the

manufacturing process such that it can be used for selection and costing, and building a

selection logic algorithm that adequately represents the planning logic employed by expert

process planniag.

I
.a 17

I UNCLASSIFIED

CDRL No. 0002AC-5

5Normally in a manufacturing plant, the overall process for a given discipline is known and

recorded in the form of a flowchart. This flowchart is a block diagram listing of each and every

process within that discipline. The order of those operations is structured so that it is the default

ordering of how products flow. If a process gets repeated, it generally shows up in each5 repeated point in the flow chart. These flowcharts usually employ a rudimentary decision logic

scheme. As such it represents the available processes in a pick list fashion. Pictured in figure

3.3-2 is a typical manufacturing process flow for printed wiring boards.

Create Automatic
Manufacturing Image and Etch Inner Layer
Data Package inner Layers InspectionI

Laminate Plate/Image/
and Drill j Plate & Etch Rout

Outer LayersI

I BM Auto Insert
Tare BaMPick and Place

Manual Reflow r Manual
Assembly Clean Assembly

In-Circuit I 11coi'lltConformaZ

STest Coat

Figure 3.3-2 Printed I~rint.l Hoard Manufacturing Flow

The logic representation method that Raytheon developed for this task is based on prior

work in process selection. The model is hybrid of decision tree and rule based processing. The

decision tree representation was selected because it allows the system to display the basic flow

of the process in a presentation format similar to what the manufacturing engineers are used toI
II

1

UNCLASSIFIED

CDRL No. 0002AC-5

3 with their flowcharts. The decision informs the user of the basic flow of the overall process

while letting the user plan at various levels of abstraction. These levels include the process, an

if organized group of manufacturing operations sharing characteristics, the operation, a common

unit of work that is performed on the part, and the operational step, which is an elemental unit

of work within an operation. By defining the levels as we have, a hierarchical planning strategy

is enabled. Using this schema, we can reason about alternative processes, plan the operation

Sflow within the selected process, and then detail the individual steps of that operation, such as

set-up ard run time elements.

I The reasoning process is guided by the representation of the tree structure which sets the

initial search evaluation order, and the rule processing mechanisms. The reasoning logic is

attached to individual activities in the tree. These rules are used to evaluate the node. The

purpose of the evaluation is to cause selection of the node. If a rule is evaluated as true then the

search continues past that node to evaluate lower levels. As the tree is evaluated, essentially the

rules look at part characteristics and other node values(TIF), operations and operation steps are5 stored to form the process sequence. Each operation in the process sequence is evaluated for

labor content to determine the standards.

The system also has the ability to store alternative models of a particular process. This

capability allows the process engineer the ability to explore alternative process approaches and

plan process improvements. Figure 3.3-3 illustrates a sample assembly hierarchical tree for

3 printed wiring boards.

1
I
U
I
I
I

19I

I UNCLASSIFIED

CDRL No. 0002AC-5

S~Printed
Wiring

Assembly
I Sequential

i I III/ Materials Componen]• Assembly

I Sequential Sequential

5 Figure 3.3-3 Printed Wiring Assembly Process Model

3.3.4 Manufacturing Analyzer

There are three capabilities provided in the Manufacturing Analyzer module: process

S~analyzer, yield and rework analyzer, and cost estimator. The sub-sections to follow describe

each capability.F 3.3.4.1 Process Analyzer

In order to perform cost and yield analysis on a design, the manufacturing process must be

modeled. The MO process model supports a hierarchical tree based model of a manufacturing

enterprise. Processes, operations and steps are defined for a manufacturing activity. Rules are

defined which tie the product data to the processes, operations and steps. The selection rules, if

satisfied, will trigger the selection of that process, operation or step.

An object-oriented methodology has been employed to implement the model. To represent

5 processes, operations, and steps in the tree structure, a generic Manufacturing Activity class

named "MfgSpec" was defined. The MfgSpec objects contain information that is common to

£ processes, operations, and steps. Within each MfgSpec is a reference to an "info" object. This

2
2()I

I UNCLASSIFIED
CDRL No. 0002AC-5

info object contains the information specific to the type of manufacturing activity being

modeled (i.e. process, operation, or step).

I The Manufacturing Analyzer's selection methodology is done by traversing the process

model in depth-first fashion. The logic at each manufacturing activity node will be evaluated to

see if this is an applicable path to follow. The selected nodes are added to an analysis tree

which is also modeled as a general purpose tree structure. After the entire process model has

been evaluated and the applicable nodes identified, the analysis tree created during process

selection is traversed in a post-order fashion so that the time and cost can be calculated.

3.3.4.2 Yield & Rework Analyzer

The yield and rework analyzer provides the capability to calculate yield and rework rates for

the selected processes associated with a product design. This part of the analysis calculates the3 yield and/or rework rate on an operation level within the process. The rate is calculated based

on the design entities influence on the operation. The yield and/or rework rate for each design5 entity/entities associated with an operation is calculated through the evaluation of a rule, which

has a corresponding equation attached. If the rule evaluates to true, then the equation is3 calculated to provide the yield or rework rate. The rate equations may include references to the

existence, value, or quantity of product design entities. An example yield rule and

corresponding rate attached to an operation is as follows:

Yid D atta*3 Design Features Rule Scrap Rate
aspect ratio < 5.0 & aspect ratio > 4.0 0.05000
aspect ratio <= 4.0 & aspect ratio > 2.0 0.02000

The total yield rate for an operation is calculated by using the weighted average of the

constituant parts. The total rework rate for an operation is calculated by summing up the results

of each rework occurrence.

3.3.4.3 Cost Estimator

The cost estimator calculates the recurring manufacturing cost for each activity in the

process sequence. The following calculations are performed:

• Labor standards for each resource attached to a process, operation, and step are calculated

for setup and run time utilization. The value for each is calculated through the evaluation

2
21I

I UNCLASSIFIED
CDRL No. 0002AC-5

of an equation which may include reference to the existence, value, or quantity of design

entities in the product data. Each resource has an associated cost in terms of an

appropriate measure. For example, a labor resource has an associated cost in terms of

dollars per time unit.

I *Estimated ideal cost for each process, operation, and step is calculated from labor

standard values multiplied by the wage rate of the labor grade or bid code of the

resource(s) performing the operation, and the production efficiency value for that

operation.

Rework operations are calculated based on the rework rate determined by the yield and

rework analyzer multiplied by labor standards of the resources for the rework condition.

The labor grade wage rates and production efficiencies are then applied.

* For each operation, the estimated actual cost is calculated by multiplying the estimated

ideal cost by the number of units processed, including both good and scrapped units. The

number of units processed by each operation are calculated from the value of the required

good units at the subsequent operation divided by the yield at the operation under

evaluation. For example, if the desired production quantity is 100 boards and operation I

has a scrap rate of 5%, then the quantity of required units for operation 1 is 105.

I *The total estimated ideal cost and total estimated actual cost for each sequence of

processes are calculated by rolling up the individual cost of steps into operations, and

operations into processes. The estimated actual cost for a good unit is calculated by

dividing the total estimated actual cost for the process by the number of good units

produced.

3.3.5 Manufacturing Advisor

The manufacturing advisor provides the capability to view the results produced by each

I activity participating in an analysis. The advisor includes the following capabilities:

* A mechanism for selecting one or more manufacturing analyzer runs for comparing

and/or displaying the results.

I
I

22I

I UNCLASSIFIED

CDRL No. 0002AC-5

• Graphical capabilities (i.e. line, bar, stacked bar and pie charts) for comparing and
displaying the process, yield, rework, or cost versus a processes or operations for one or
more manufacturing analyzer runs.

i A reporting capability which prints analyzer results to the screen or file for one or more
runs including process sequence, yield and rework, and cost.

U The capability to summarize design entities causing manufacturing guideline violations
(interface to the RM) across multiple processes. Report recommendations on these

guideline violations.

- A final manufacturing summary report, identifying cost drivers, for each process
contributing to a multi-process analysis for a given design database after completion of
the manufacturing optimization process.

II Provided below in figure 3.3-5 is a sample of the type of graphical display the user could
see for a yield versus process comparison graph.

Snbar itne i pie 0 stacked bar

Yield verst Process

* 92.

I
92"

MB -1 S2 S3 S4 SS S6 -7 we

A- A-- nalysis Yml Analysis hM- - Analysisu

Figure 3.3-5 Sample Yield versus Process Comparison Graph

3 3.3.6 Process Modeler

The process modeler provides the capability to model the selection logic of the
manufacturing process. The process model used in the MO system is designed as a hierarchical
planning system. The hierarchical planning system is developed as a general purpose tree

23

I ..

I UNCLASSIFIED

CDRL No. 0002AC-5

structure. The hierarchical tree consist of Manufacturing Activity nodes. Each Manufacturing

Activity node consists of the following:

I • Reasoning Logic - If these rules are satisfied, then the activity node is included in the total

process analysis model.

Manufacturing Data - There are three type of manufacturing data supported in the MO

hierarchy model. The three data types are processes, operations, and steps. The data will

be modeled by linking manufacturing processes to operations, and operations to steps.

Each operation is annotated with its associated yield and rework rates.

- Resources - At each process, operation, or step node there is a list of resources attached.

A resource is any facility, person, equipment, or consumable material used in the

manufacturing process.

i • Ordering - The children of a Manufacturing Activity node are defined with an imposed

ordering of a concurrent or sequential flow when building the model.

The MO system allows the manufacturing specialists to capture and maintain multiple

3 copies of process models through a set of utilities. The utilities provide the model developer

with the tools necessary to graphically build and view the process logic tree, reasoning logic,

yield/rework, resources, and labor standards. Through the use of these utilities, the process

team has the ability to modify the process model data, to explore alternative process approaches

and plan process improvements, and then analyze the effects of these changes on the product

cost. The user interface consist of pull down menus and pop up forms to allow adding,

3 copying, moving, deleting, editing, and printing of the processes in the hierarchical tree.

Pictured below in figure 3.3-6 is the main user interface window for the Process Modeler with

a sample process model displayed in a list view.

I
I
I
I

24I

I UNCLASSIFIED
CDRL No. 0002AC-5

-- ~g -

File Edit View Print H!elp

I ~Printed biriring Assembly
I ->Kit Product Materials

I-->Printed Wiiring Board

I -->PbJB Fabrication
I --)Substrates
I-->Nulti Layer BoardI I1-->PIJB Prep

I -->Kit Components
I-->Purchase ComponentsI I-->Component Preparation

I ->Component Insertion / nsertion

....I
U Figure 3.3-6 Process Modeler User Interface Window

I2

UNCLASSIFIED

CDRL No. 0002AC-5

lI 4. User Interface Screens
The main user interface window for MO provides access to the various modules within the

system, including the product and process STEP files, the manufacturing analyzer, the

manufacturing advisor, the process modeler, and system help. Figure 4-1 depicts the MO main

window.

File Analyzer Advisor Modeler Help

I
* Figure 4-1 MO Main Window

4.1 File Menu

The File menu provides a means to select and edit the product and process data and3 provides access to two translators. Rapids2Step translates PWB design data from a Raytheon

propriety format to STEP. Step2Rapids translated a PWB design from STEP to a Raytheon

propriety format. Figure 4.1-1 illustrates the MO main window with the File menu pulled

down.

I i '_'Jactri

File AnalUzer Advisor Modeler Help

I _Data

Process Models..

RAPIDS to STEP
STEP to RAPIDS

STEP Editor ...

3 Exit

Figure 4.1-1 File Options

I
26I

m UNCLASSIFIED

CDRL No. 0002AC-5

4.1.1 Product/STEP Data Selection

MO allows the user to select a product/STEP data file for analysis, or to edit a STEP file in

the STEP Toolkit Editor. When the STEP Data button is selected, figure 4.1-2 is displayed. A

user performs a selection for choosing a design database to analyze or a process model for use

during analysis. When the Edit button is selected the STEP Editor from STEP Tools, Inc. is

invoked with the selected STEP file loaded. The STEP Editor enables the user to add, delete,

and modify STEP entity instances.

Filter

/net/caesun5/usr3/users/lal ibertV/demos/*.rose

I Directories Files

* s pclpdemo.rose
,'demos/.. sia ldemo.rose
'demos/pdp
fdemuo/pdpdemno
'demos/smalidemo

Selection

/net/caesun5/usr3/users/lal tberty/defos/.

* Ie

Figure 4.1-2 Product Data Selection/Edit Menu

4.1.2 Process Model Selection

The MO system allows the manufacturing engineer to capture and maintain multiple copies

of process data models through a set of utilities. Through the use of these utilities, the process

team has the ability to modify the process model data, to explore alternative process approaches

and plan process improvements, and then analyze the effects of these changes on the product

manufacturing cost. Figure 4.1-3 shows the user interface provided for process model

3 selection.

m
I

27I

m UNCLASSIFIED
CDRL No. 0002AC-5

Filter

I net/caesun5/usr3/users/laliberty/MO/PROTO/*.process.step

Directories Models

I CCAme dprocessestep
CFA .process. stepI ~CCA1 .run
CCA2. run
FAB. run3 ~FABI .run
IFAB2.run IN_______

U Process Model Selection

I/net/caesuri5/usr3/users/lal iberty/MO/PROTO/

3 Figure 4.1-3 Process Model Selection Menu

(RSDIRLD) using the RAPIDS Procedural Interface. Once all of the records have been read

the STEP file is created and the STEP objects are written toit by the ROSE STEP filer. See

figure 4.1-4 for an illustration of rapids2step process.

m • "•LRAPIJDS | "RAPIDS ROSE•

Procedural -40 to • STEP m _ STPL Interf ace L-ISTEP Fifler f-',....

m Figure 4.1-4 RAPIDS to STEP Data Flow

3 The MO system provides the user with an interface to the rapids2step translator. The

interface is shown in figure 4.1-5.

2
28I

UNCLASSIFIED
CDRL No. 0002AC-5

Enter RAPIDS design name:

Figure 4.1-5 RAPIDS to STEP Form

I 4.1.4 STEP to RAPIDS Translator Interface

Step2rapids is also a C++ application that utilizes ROSE and tools deveh, . by STEP

Tools Inc. The program reads a STEP file conforming to the EXPRESS schemas developed as

m part of this project. The ROSE STEP filer is used to read the STEP file into instances of classes

created by the express2c++ compiler. Each of the STEP object lists is traversed and for each

3 object in the list an appropriate C structure corresponding to the RAPIDS procedural interface

is created and its fields are populated with the values of the corresponding attributes of the

3 STEP object. See figure 4.1-6 for an illustration of the step2rapids process.

I • • STEP to Procedural
rI Filer RAID Interface

i Figure 4.1-6 STEP to RAPIDS Data Flow

3 The MO system provides the user with an interface to the step2rapids translator. The

interface is shown in figure 4.1-7.

I
m
m
I
i

29m

UNCLASSIFIED
CDRL No. 0002AC-5

Enter Design STEP File

3 IEnter RAPIDS Design Directory

1 Figure 4.1-7 STEP to RAPIDS Form

1 4.2 Analyzer Form

5 The MO system provides the user with the ability to perform a manufacturability analysis

based on a selected manufacturing process model versus a particular product design database

through the analyzer button on the main window. The analyzer determines the appropriate

processes required to build the product based on the selected process model, calculates the

overall yield and rework rates of processes, operations, and steps based on the selected process

flow, calculates the ideal time to perform the processes, operations, and steps. The yield rates

are incorporated to project the estimated actual times. The cost utilizes the ideal and estimated

actual labor times by multiplying them with the resource(s) labor rate(s) to obtain the ideal and

estimated actual cost of each process, operation, and step, as well as the cost of the entire part.

When a user selects the analyzer button, the system begins the cycle of selecting the applicable

processes, calculating the yield and rework, and finally to determine the ideal and actual

estimated cost of the part under analysis. The user can then select the type(s) of analysis to be

* performed.

4.3 Advisor Window

I The Manufacturing Advisor module provides the capability of viewing the analyzer results.

The user can select analysis runs to view. The user can display process, quality, or costing

results as graphs, and can also view complete analysis data to the screen or to file in report

format. Figure 4.3-1 illustrates the Manufacturing Advisor window which is displayed when

the user hits the Advisor button on the Main Window.

30I

I UNCLASSIFIED

CDRL No. 0002AC-5I
File Graphs Reports Help

r _ - u A-o1 r
IPUB -• MLB I- - s4 I

-43 Sns um -i sB6

I

m Figure 4.3.1 Manufacturing Advisor Window

4.3.1 Select Analysis Runs

I The MO system supports viewing of one or more anal%,;-:; rns:; so that the user can visually

see the results, as well as visually compare analyses. The user can select the run(s) which

he/she wants to view. The default selection is the analysis results which corresponds to the last

analyzer run performed.

4.3.2 Process Graph Display

I When the Process Graph button is chosen, the selected analysis run(s) process flow is

graphically displayed. Each process is displayed as a square button with the name of the

3 process shown inside. Figure 4.3-2 illustrates the resulting process flow graph for one set of

analysis results.

II
31I

m UNCLASSIFIED
CDRL No. 0002AC-5

File Graphs Reports Help

-- SB1I -(582 I
- 5B32

m _ __, 8
-SO7

I I
tt, ... • t..,~t...... ..•,. ~t-t~tt-.t. ý= - ...•tt.t~t

..*-..-. v.,•.-..-t.-.----.-.-...y
...-. +

Figure 4.3-2 Process Graph

The user can then choose to select a process button on the graph in order to see the analysis

m detail, for that process including: process name, yield and rework percentage, production

quantity, rework cost, ideal FAIT (Fabrication, Assembly, Inspection, and Test cost), and the

3 eqmated actual FAIT. Figure 4.3-3 illustrates the form that is displayed when a particular

process is selected.

I
I
I
m
I
I

32I

I UNCLASSIFIED
CDRL No. 0002AC-5

Process Hame _________________
I Yield CM 76

Remork MX) ,0I

Rework (S) [O~Cperations
1Qua1ity Mark BoardG

i uns ncing gdO xide TreatmentEmil] Bake Panels
FAIT (S) 7.9Laminate

I i a A FWindo wiStress Relief p l

I Rej r! Help

Figure 4.3-3 Process Results Viewing Form

4.3.3 Quality Graphs

I The MO system provides for graphically displaying the quality results associated with

analysis runs including graphs for yield, rework, and production quantity. Figure 4.3-4

3 illustrates the Advisor Window with the Quality Graphs menu pulled down.

STime / Cost Graphs i> Rework P

i moduct io Quantity P

I i-Aso

I _i

II

I

3 Figure 4.3-4 Quality Graphs

3
33I

I UNCLASSIFIED

CDRL No. 0002AC-5

1 4.3.3.1 Yield Graphs

The type of yield quality graphs available are yield rates versus processes and yield rates

versus operations associated with a particular user selected process. The graphs are displayed

in a separate window where the user can select to display the data as a bar, stacked bar, line, or

pie chart. The yield defaulting display will be a line chart. A sample line graph of yield versus

process is depicted in Figure 4.3-5.

Idm

bar line 0 pie s tacked bar

L invert

Yield vermm Process

92 •

98 I
804

I- SB. 1 S82 S,3 SB4 S,5 ,3G SB7 SOB

-- r- Arnalysis bmnl

Figure 4.3-5 Yield versus Process Graph

3 If the user wants to compare the yield rates versus process for two runs, he/she would

select the analysis runs from the form under the Select Analysis Runs button, and then select

3 Yield vs. Process under the Quality Yield buttons. Figure 4.3-6 illustrates a sample yield

versus process line graphs for two selected analysis runs.

3
I
U
U
I

34I

I UNCLASSIFIED

CDRL No. 0002AC-5

I

bar * line 0 pie 0 stacked bar

0invert

Yield versus Process

Ii 'mi3 92-

IIB SD1 SB2 SB3 SB4 SB M S8 97 Sio

Analysis Bhon i ---- Analysis Rm2 - --- - Analysis F m3
...... -F ; -'•''• "•' ." " ; -" - ; - -- -. -.........- ' .: :.''- " " - .""

Figure 4.3-6 Yield versus Process Comparison Graph

4.3.3.2 Rework Graphs

The type of rework quality graphs available are rework rates versus processes and rework

rates versus operations associated with a particular user selected process. The graphs are also

displayed in a separate window, like the yield graphs, where the user can select to display the

data as a bar, stacked bar, line, or pie chart. The rework defaulting display will be a bar chart.

4.3.3.3 Production Quantity Graphs

I The type of production quantity graphs available are quantity rates versus processes and

quantity rates versus operations associated with a particular user selected process. The graphs

i are also displayed in a separate window, like the yield and rework graphs, where the user can

select to display the data as a bar, stacked bar, line, or pie chart. The production quantity

I defaulting display will be a line chart. Figure 4.3-7 illustrates a sample quantity versus process

line graph.I
I
I
I

35I

l UNCLASSIFIED
CDRL No. 0002AC-5

0 bar line 0 pie 0 stacked bar

Prod. MTY "versus ProcessISO
140I ---. -- .A-A"a

130'

I 120-

I 110. /

100 Sf1 Sf2 S;3 ;4 ;;S SG Sf7 S

3 - &- A Analysis Hml

Figure 4.3-7 Production Quantity versus Process Graph

If the user wants to compare the production quantity rates versus process for three runs,

he/she would select the analysis runs from the form under the Select Analysis Runs button, and

then select Prod. QTY vs. Process under the Quality Prod. QTY buttons.

j 4.3.4 Costing Graphs

The MO system provides for graphically displaying the costing results associated with

I analysis runs including graphs for time, cost, and cost details.

4.3.4.1 Time/Cost Graphs

The type of time/cost quality graphs available are time or cost versus processes and time or

l cost rates versus operations associated with a particular user selected process. The graphs are

displayed in a separate window where the user can select to display the data as a bar, stacked

l bar, line, or pie chart. The time default display will be a line chart, and the cost default display

will be a bar chart. Just like with the Quality graphing capabilities, the user must select the

m associated process before a Time or Cost versus Operations graph can be displayed.

3
I

36I

I UNCLASSIFIED
CDRL No. 0002AC-5

4.3.4.2 Cost Detail Graphs

The type of cost detail graphs available are product breakdown and process breakdown

associated with a particular user selected process(es). The graphs are displayed in a separate

window where the user can select to display the data as a bar, stacked bar, line, or pie chart.

The cost details default display will be a pie chart. A sample pie chart of a product process

breakdown is shown in figure 4.3-8.
... • . •.•...=..

0 •bar 0 1 ine *pie 0-stacked bar

Procs Cost Breakdown

IT
SLabor

IM CCmiabledlaterial
M Rtework3 scrqa

Figure 4.3-8 Cost Details Graph for Process

4.3.5 Analysis Reports Form

U The Analysis Report button provides the means to generate reports for the results produced

by each process participating in an analysis. This includes the ability to view process flows,

yield and rework, cost, and requirements. A final summary report, identifying cost drivers, for

each process contributing to a multi-process analysis for a given design database can also be

generated. Figure 4.3-9 is displayed when a user selects the analysis report button. The user

can then select the type of data that he/she wants in the output report.

I
U
I

37I

I UNCLASSIFIED
CDRL No. 0002AC-5

i [] Process Flow

[]Yield / Rework

! I• Costing

3 [] Requirements

0 Final Report

LI!He
Figure 4.3-9 Analysis Reports Form

I Provided below is a sample report generated from the Manufacturing Advisor based on the

process flow and corresponding yield results for a PWB Fabrication process.

Fabrication Process Selection/Cost Estimation Report

MLB - layers 1, 14 OVERALL YIELD is 94 percent

IOno Description Ideal(S) Actual(S) Rework(S) Yield Rework # Units
10 mark part no 0.123 0.12 0.00 100 0.000 137
30 oxide treat 1.111 1.11 0.00 100 0.000 137
40 bake panels 0.444 0.44 0.00 100 0.000 137
50 Jayup 3.123 3.12 0.00 100 0.000 137
60 laminate 0.600 0.80 0.00 94 0.000 137
80 route excess 0.715 0.92 0.00 100 0.000 128
90 oxide strip 0.250 0.32 0.00 100 0.000 128

110 drill tooling 0.220 0.28 0.00 100 0.000 128
130 drill 12.123 15.12 1.23 92 0.005 128
160 electroless 0.661 0.66 0.00 100 0.000 117
170 copper panel 0.555 0.55 0.00 100 0.000 117180 electrostrike 0.512 0.70 0.00 98 0.000 117

i Fabrication Yield Analysis Renort

iMLB - layers 1, 14 OVERALL YIELD IS 94 percent

IO1no Design Feature Description Value Scrap Per Feature 0pno Yield
60 14 layers and 8 substrates N/A 6.000 94

130 annular ring 8.00 8.000 92
180 aspect ratio 4.00 2.000 98

I
I

38I

I UNCLASSIFIED

CDRL No. 0002AC-5

* 4.4 Modeler Window

3 The Process Modeler will provide manufacturing engineers with the ability to model the

manufacturing processes of their products. The process model used in the MO system is

3 designed as a hierarchical planning system. The hierarchical planning system is developed as a

general purpose tree structure. The hierarchical tree consist of Manufacturing Activity nodes.

I Each Manufacturing Activity node consists of the following:

" Reasoning Logic - If these rules are satisfied, then the activity node is included in the total

3 Iprocess analysis model.

" Manufacturing Data - There are three type of manufacturing data supported in the MO

hierarchy model. The three data types are processes, operations, and steps. The data will

be modeled by linking manufacturing processes to operations, and operations to steps.

Each operation is annotated with its associated yield and rework rates.

- Resources - At each process, operation, or step node there is a list of resources attached.

A resource is any facility, person, equipment, or consumable material used in the

3 manufacturing process.

"• Ordering - The children of a Manufacturing Activity node are defined with an imposed

3 order of concurrent or sequential flow when building the model.

The Process Modeler provides functionality to create new manufacturing activity nodes and

edit, copy, and delete existing nodes. Included in this functionality is a means to specify

selection rules for the manufacturing activity nodes, define the manufacturing data (i.e.

process, operation, or step) attached to the activity node, and identify the ordering for the

children activities as either concurrent or sequential. Associated with each operation are scrap

and rework rates. The Process Modeler window is shown in Figure 4.4-1. A sample process

model is displayed.

I
U
U
I

I UNCLASSIFIED

CDRL No. O002AC-5

I File Edit View Print Help

Printed Wriring Assembly
l-->Kit Product Materials

I-->Printed Wiring Board

I-->PWB Fabrication
I -- >Substrates
I-->Multi Lager Board

I-->PWB Prep
l-->Kit Components

I -- >Purchase Components
I-->Component Preparation

I-->Component Insertion / Onsertion

IIIK I.. .. i...

Figure 4.4-1 Process Modeler Window,

The user is provided the ability to create new process models and select, delete, and copy

existing process models. These operations are done through the Process Model Selection

window shown in figure 4.4-2 which is accessed by selecting the Models icon from the

Process Model menu bar shown in figure 4.4-1.

I
I
I
I
I
I
I
I

i 40

U UNCLASSIFIED
CDRL No. 0002AC-5

rocess Model Selection

Filter

' net/caesun5/usr3/users/lal ibertý/MO/PROTO/*.process.step

Directories Models

CCA. process. step

CIA.process.step
CCA1.run
CCA2.run
FAB.run
FAB1.run
FAB2 run __

Process Model Selection

/net/caesun5/usr3/users/lal ibertyMO/PROTO/

SCance I Help

Figure 4.4-2 Process Model Selection Window

4.4.1 Manufacturing Activity Node Definition

I Defining a new process node will consist of selecting the Add icon from the Process

Modeler Window menu bar and specifying the name of the node to the Manufacturing ActivityIISpecification window shown in figure 4.4-3. The interface will then support activity data type
selection (process, operation, or step), child ordering, selection rules, and resources.

Editing existing nodes will be accomplished by graphical selection of the desired node from

the process modeler window (see figure 4.4-1) via the mouse. Once the activity has been

selected, the Manufacturing Activity Specification window will be displayed with the data for

the selected activity node loaded. Existing nodes are deleted by selecting the Delete icon and

then the activity node to be deleted.

I
I
I

41I

I UNCLASSIFIED1
CDRL No. 0002AC-5

Name Copnn nsertion / 9rtioi

IParent Printed Uriring AssemblIL

Description:

Insert /mount components into/onto board.

Activity Child OrderingRue

- Process 0Serial [es1111111].
<Operation *Concurrent [1 1 1
Action Se

* l.anrj l FHelp

3 Figure 4.4-3 Manufacturing Activity Specification Window

4.4.2 Selection Rules Definition

The window in figure 4.4-4 will support the creation, modification, and deletion of

selection rules for an activity node. There will be an implicit OR between each of the rules in

the list for an activity node, i.e., if one of the rules in the list is satisfied, then the node will be

selected.

pa l..c.to..t..[....
..... . e r..te.

I Figure 4.4-4tin SlcIo pdRucles Winow

Ie-e~rue

42

I UNCLASSIFIED

CDRL No. 0002AC-5

When either a new rule is to be defined or an existing one modified, the Rule Specification

window shown in figure 4.4-5 will be presented. This window will also be utilized to specify

3 scrap and rework rate rules and operation setup and operation run time rules.

RR" R! FO . .R. ----- - ---- :

3 Rule

oute.rec I via-rec I pinrrec I metal-area-rec

IIClear I
Entities AttributesIsegment...rec signal SIR
-wiroute.data-T route-type SmT

status SIR
ListOfroute.rec target-name pin-name.r
Listtfsegment-T objectý..name pin_name_r1vi-rec target-pin pinrrec

Entity.Att.Att...

3]IAdd to Rule[oute-rec I

I LII LI [11 I]

LI1I Fi T-I

Figure 4.4-5 Rule Specification

U 4.4.3.1 Yield Rate Definition

3 Attached to every operation is a list of yield rates. A yield rate can be associated to a given

entity attribute or a set of entity attributes. This is specified through an ordered list of rules and

3 yield rates. The yield rate is established using the yield rate equation attached to the first yield

rule in the ordered list that is satisfied. A user interface supporting this functionality is shown

3 in figure 4.4-6. The yield rules and the yield rates are specified through the Rule Specification

Window shown in figure 4.4-5.

I
43I

I UNCLASSIFIED
CDRL No. O002AC-5

* -
Sie Id Spec if ica iwn

Operation Name: Etch I
Yield Rules

route-rec.line-width < 8.0 & copperwei [
route_.ec.line-width <= 12.0 a copper-u E

route-..rec.line_width < 8.0 a copper-weie
iroute..rec.Iine...width <=~ 10.0 & copper&.u

Yield Rate

,919.2 Ei

Figure 4.4-6 Yield Specification Window

4.4.3.2 Rework Rate Definition

I Attached to every operation is a list of rework rates. A rework rate can be associated for a

given entity attribute or a set of entity attributes. This is specified through an ordered list of

rules and rework rates. The rework rate is established using the rework rate equation attached

to the first rework rule in the ordered list that is satisfied. A user interface supporting this

functionality is shown in figure 4.4-7. The rework rules and rates is specified through the Rule

Specification Window shown in figure 4.4-5. Also attached to each rework rule rate pair is a

list of resources that is required to complete the rework activities. The resources used along

with their associated setup and run time equations is specified using the Resource Utilization

U interface shown in figure 4.4-8.

I
I
I
I

44I

I UNCLASSIFIED
CDRL No. (X)02AC-5

I eýrk Speclficatl

Operation Name Etch

I Rework Rules

route-rec.line-width < 8.0 8 copperwei [
route-rec.Ilnehlidth <= 10.0 a copper-to

routetrec.Ilne-width <= 12.0 a copperj E

route-rec.line-width <= 10.0 & copperto

Rework Rate

* [uo,,.o_ nJ--dt* iwE] Edit_

Figure 4.4-7 Rework Specification Window

4.4.4 Resource Definition

For each process, operation, or step performed, a list of needed resources can be specified.

3 When resources are utilized the amount of setup time and run time that is required for the

resource must also be provided so that proper costing can be calculated. Figure 4.4-8 shows

3 the Resource Utilization interface that will allow the process modeler to construct the list of

resources utilized by a process, operation, or step. The setup and run time equations are

3 specified using the Rule Specification interface shown in figure 4.4-5.

I
I
I
I

I
45I

3 UNCLASSIFIED
CDRL No. (X)02AC-5

I ---

Prooess/Operation __B

Resources Resources Utilized

Wave Solder Acid Batch
Acid Batch II' .. '-0.
Photo Lithograph• • Add)> Te ir•lcia, I
Technician I TechnIician 2__
Technician 2 [~]Process Enginleer
Setup Time

m - LfIIIIZI
Run Time

m :.•.:. :....•: ..:.:. :.. ::. 7.... .T.:...: :: ._ . . .: : ...: : 7

Figure 4.4-8 Resource Utilization Window

I Figure 4.4-9 show the Resources interface which lists all of the Resources that are

currently stored in the process model. Thc interface supports creating new resources, and

m editing and deleting existing resources. To access the Resources interface the user would select

the Resources icon from the menu bar shown in figure 4.4-1.

Wave Solder
Acid Batch
Photo Lithographer
Technician 1

Technician 2

m OK ['Caci Help

m Figure 4.4-9 Resource Window

m The Resource Specification interface is shown in figure 4.4-10. This interface is used for

specifying new resources and modifying existing ones. Attached to each resource is a list of

3 user definable parameters or attributes. Each resource falls into one of the following four

categories: labor, facility, equipment, or consumabk resource.

I
46I

U UNCLASSIFIED

CDRL No. 0002AC-5

I ~Resource Name E:[,cid Batt l

ParametersI -

I
Resource Type

3 O Labor

<>Facility

3 O Equipment

*Consumable Material

I 0•ac •ance H l

I Figure 4.4-10 Resource Specification Window

3 Figure 4.4-11 shows the interface for specifying a facility resource.
ý ý iiyRsweSpecificationUf

Cost Per Square Foot Per Time Unit:

I ~Square feet Allocated:II

I Figure 4.4-11 Facility Resource Specification Window

3 Figure 4.4-12 shows the interface for specifying an equipment resource.

I
I

47I

I UNCLASSIFIED
CDRL No. 0002AC-5

ý ;;ý . - Re .sore-SeCi(catioin1

Cost Per Time Unit:Io
[Equipment Categ~or~q

EZJcel Help

Figure 4.4-12 Equipment Resource Specification Window

I An individual resource, consumable material pair is specified in the Resource/Consumable

Specification Window shown in figure 4.4-13.

Resources Consumnming Resources

bWave Solder Technician I

Photo Lithographe
Technician 1
Technician 2 ARe

Units Exhausted Per Time Unit I
2.56

Figure 4.4-13 Resource/Consumable Specification Window

Figure 4.4-14 shows the interface for specifying labor resources.

II
I
I

48I

I UNCLASSIFIED
CDRL No. 0002AC-5

Figure 4.4-14 Labor Resource Window

I Figure 4.4-15 shows the interface for specifying a labor rate resource.

Job Code R

I

I ~Dolltars Per Time Unit

I

I •I~acel [Hel p

i Figure 4.4-15 Labor Rate Resource Specification Window

I

I
I•IIi~ Il~l

I UNCLASSIFIED

CDRL No. 0002AC-5

1 5. C++ Header File Definitions
This section provides the C++ header files for the MO system. These files contain the

definition of the pertinent classes and objects in the system.

I The class specifications defined in this section were developed as follows: the EXPRESS

information modeling language was used to model both the product data and the MO process

data (Section 6 provides a complete EXPRESS schema specification of the product and process

models). Using the express2c++ compiler which is part of the STEP Programmers Toolkit

i (STEP Tools Inc.), the EXPRESS entities were translated into C++ classes. The generated

classes are structured such that all of the class attributes are declared as private. Public access

and update methods were generated for each private attribute. Each generated class was then

extended to support the additional calculation and monitoring methods required for the system.

Figure 5-1 illustrates the top-level class categories for the MO system. The sections to5 follow provide the details of the class specifications of each of these categories.

3 Modeler

ProductDesign ProcessModel

3

I

I RequirementTask Advisor [rInterface
______________global

Figure 5-1 Top-Level Class (Categories) Diagram

I
50U

I UNCLASSIFIED

CDRL No. 0002AC-5

15.1 ProductDesign

3 An EXPRESS product model was developed to model PWB data and electronic component

library data (See section 6.2 for this specification). The model consists of approximately

twenty interrelated EXPRESS schemas consisting of more than one hundred and fifty entities.

C++ source code was produced by the express2c++ compiler as described above. The3 following specification is for the "routejrec" C++ class which corresponds to the "routerec"

EXPRESS entity defined in section 6.2.1.15.

/* Class Declaration */
ROSEDECLARE (routerec) : virtual public RoseStructure {
private:

STR PERSISTENT signal;
STR PERSISTENTroute type;
STR PERSISTENT status;
pin-namerec * PERSISTENTjtargetname;
pin-namerec * PERSISTENThobject-name;
pinjrec * PERSISTENTtargetpin;
pin-rec * PERSISTENT-object-pin;
pointjrec * PERSISTENTtargetIoc;
pointjrec * PERSISTENTobjectiloc;
BOOL PERSISTENT-protect;
int PERSISTENTtarget-layer;
int PERSISTENTobjectlayer;
ListOfsegmentjrec * PERSISTENTpath;
int PERSISTENTshield id;
int PERSISTENT_pinpairjindex;
pin-pairjrec * PERSISTENT-pin-pair;
ww._routedatarec * PERSISTENTww data; STR PERSISTENT_comment;

Spubic: ROSEDECLAREMEMBERS(route-rec);

/* Access and Update Methods */
/* signal Access Methods */
STR signal()

return ROSEGETPRIM (STR,PERSISTENT_signal);

void signal (STR asignal)3I ROSEPUTPRIM (STR,PERSISTENT signal,asignal); }

/* route-type Access Methods */
STR route-type(

return ROSEGETPRIM (STR,PERSISTENTroute type);II
void route type (STR aroutejtype)

ROSEPUTPRIM (STR,PERSISTENT route-typearoute-type); I

I
1 5'If i li H

I UNCLASSIFIED
CDRL No. 0002AC-5

5 1~* status Access Methods *
STR statuso

I return ROSE_GETý_PRIM (STR,PERSISTENT-status);

void status (STh astatus)3 { ROSEPUTPRIM (STR,PERSISTENThstatus,astatus);)

/* target-name Access Methods *
pin -name -rec * target-name()

f return ROSE_GET_OBJ (pin-namejrec,PERSISTENTj-arget-name);

void target namne (pin name rec: * atarget-name)
RO-SEPULOBJ (pinname rec,PERSISTENT taget name,atargetname);}

3 f~* object-name Access Methods *
pin-namne -rec * object -name()

I return ROSEý_GETOBJ (pin-name-rec,PERSISTENT-object-name);

void object -name (pin -namne -rec * aobject-name)
I ROSE_PUT'LOBJ (piw-namejrec,PERSIST7ENT object-name,aobject-name);

1 1/* target-pin Access Methods *
pin - ec * target-pin()

I return ROSEGETOBJ (pinrec,PERSISTENT-targeLpin);

void target-Pin (pin -rec: * atargetcpin)
I ROSE_PULOBJ (pinjrec,PERSISTEN'ýtargetpin,atargetpin);

/* object-Pin Access Methods *
pinjrec * object-pin()
I return ROSEGETOBJ (pin-rec,PERSISTENT object-pin);

3 void object-pin (pin rec * aobject-pin)
I ROSE_PULOBJ (pinjrec,PERSISTENT-objecLpin,aobject~pin);

1* target-oc: Access Methods *
point-rec * targetj- oc()
I return ROSEGETOBJ (point-rec,PERSISTENTjtargetjloc);

void targetiloc (point rec * atarget loc)
I ROSE_PUTOBJ (point-re-c,PERSISTENTjtargetjloc,atarget-oc);

/* object-loc Access Methods *
poinLrec * objectj- oc()

return ROSEGET_0131 (point-rec,PERSISTENThobjectjloc);

void objectiloc (point-rec * aobjectjloc)

52

I UNCLASSIFIED
CDRL No. 0002AC-5

II ROSEPUTOBJ (point-rec,PERSISTENT-objectiloc,aobjectjloc);

/* protect Access Methods *
BOOL protect()

I return ROSEGETPRIM (BOOL,PERSISTENT protect);

U void protect (BOOL aprotect)
I ROSEPUTPRIM (BOOL,PERSISTENTh-protect~aprotect);

1 * target -layer Access Methods *
int targetjlayero

I return ROSEGETPRIM (intPERSISTENT-target layer);

void targetj- ayer (int atarget-layer)3f ROSEPUTPRIM (int,PERSISTENT-target-layer,atargetjlayer);

I* objectj- ayer Access Methods *
int objectjlayer()

return ROSEGETPRIM (intPERSISTENT-objectjlayer);

void objectjlayer (int aobjectjlayer)
I RO-SEPUT_-PRIM (int,PERSISTENT-objectjlayer,aobjectjlayer);

/* path Access Methods */U ListOfsegment-rec * patho;
void path (ListOfsegmentjrec * apath)

ROSE_-PUTL-OBJ (ListOfsegmentjrec,PERSISTENT-path,apath);

IListOfsegment -rec * route -rec ::path()
I if(!PERSISTENT~path)

if(this->isPersistento)I path (priewin (designo) ListOfsegment-rec);
else path (new ListOfsegment - ec);
return ROSEGETOB] (ListOfsegment-rec,PERSISTENT _path);

/* shield-id Access Methods *I mnt shield ido
I return ROSEGETPRIM (int,PERSISTENT-shield-id);

void shield id (int ashield-id)
I ROSEPUTPRIM (int,PERSISTENT-shield id,ashield id);

/ * pin-pair -index Access Methods *
int pin-pair -ndex()3I return ROSEGETPRIM (int,PERSISTENT-pin-pair index);

void pin-pairJndex (int apin-pairjindex)

53

I UNCLASSIFIED
CDRL No. 0002AC-5

I ROSEPUT PRIM (int,PERSISTENT _pin-pair index,apin-pair index);

/* pin-pair Access Methods *
pin-pair~jec * pin -pairo

I return ROSEGETOBJ (pin-pairjrec,PERSISTENTýpin~pair);

Uvoid pin-pair (pin-pair - ec * apin-pair)
I ROSEPUTLOBJ (pin-pair -rec,PERSISTENTýpin-pair,apin-pair);I

3* ww data Access Methods */
ww~route-data -rec * ww -data()

I return ROSEGETOBI (ww route-data-recPERSISTENT-ww-data);

void ww data (ww -route -data -rec * aww data)
I ROSE_PUT OBJ (ww-route-datajrec,PERSISTENT-ww-data,aww data);)

/* comment Access Methods *
STh comnment()

I return ROSEGETPRIM (STR,PERSISTENT-comm-ent);

void comment (STR acomment)
fROSEPUT PRIM (STR,PERSISTENT-comrnent,acomrnent);)

/* Constructors *
route rec 0U rou~teRec asignal,

I STh astatus-,
pin-name -rec *atargetjiame,

pin-name rec * aobject-narne,
pin -rec * -atargetpin,
pin-rec * aobjecv~pin,
point-rec * atargetjloc,
point Irec * aobjectjloc,
BOOL aprotect,
int atarget layer,
int aobjectjlayer,
ListOfsegment-rec * apath,
int ashield-id,
mnt apin-pair-index,
pin-pair -rec * apin-pair,
ww -route-data -rec * aww-data,
STh acomment);

54

I UNCLASSIFIED

CDRL No. 0002AC-5

I 5.2 ProcessModel

3 The ProcessModel class is used to manage the manufacturing process models. Each

ProcessModel object contains a reference to the top node in the hierarchical process tree

structure. Each also contains the name of the model, the dates of its creation and last

modification, and the name of the author of the model. The ProcessModel objects are created

3 by the Modeler managing object. The Analyzer traverses the ProcessModel in order to select

the appropriate analysis plan for the ProductDesign under analysis, and calculate the

3 corresponding yield, rework, and cost of each selected process and operation. The analysis

plan is a subset of the original ProcessModel object. The Advisor managing object provides3 viewing of the resulting Analyzer process plan. The sub-sections that follow detail each of the

ProcessModel, Resource, and ReasoningLogic classes/objects and their corresponding

3 Imethods.

5.2.1 ProcessModel Specification

I /* Class Declaration */
#ifndef ProcessModel_h3 #define ProcessModel_h

#include "rose.h"
#include "process-model-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ProcessModel.hi"

I ROSEDECLARE (DateRec);
ROSEDECLARE (MfgSpec);
#define ProcessModelOffsets(subClass) \

RoseStructureOffsets(subClass)\
ROSESUPERCLASS_OFFSET(subClass,ProcessModel)

ROSEDECLARE (ProcessModel) virtual public RoseStructure {
private:

STR PERSISTENTname;
DateRec * PERSISTENTcreationDate;
DateRec * PERSISTENTmodifyDate;STR PERSISTENT-author;

Spublic:MfgSpec * PERSISTENTjtopProcess;

ROSEDECLARE MEMBERS(ProcessModel);

3 /* Access and Update Methods */

5
| 55

I, :, • -

UNCLASSIFIED
CDRL No. 0002AC-5

/* name Access Methods *
STR nameo

I return ROSEGETPRIM (STR,PERSISTENT-name);I)void name (STR aflame)
I ROSEPUT PRIM (STR,PERSISTENT-name,aname);

/* creationDate Access Methods ~
DateRec * creationDate()

I return ROSE_G5ETOBJ (DateRec,PERSISTENT-creationDate);

void creationDate (DateRec * acreationDate)
ROSEPUT OBJ (DateRec,PERSIST7ENT-creationDate,acreationDate);

/* modifyDate Access Methods ~
DateRec * modifyDate()

I return ROSEGETOBJ (DateRec,PERSISTENT-modifyDate);I Ivoid modifyDate (DateRec * amodifyDate)

{ ROSEPUL-OBJ (DateRec,PERSISTENT modifyDate,amodifyDate);

/* author Access Methods *
STR authoro
I return ROSEGETPRIM (STR,PERSISTENT_author);

void author (STR aauthor)
I ROSEPUT..PRIM (STR,PERSISTENT-author,aauthor);

/* topProcess Access Methods *
MfgSpec * topProcess()
I return ROSEGETOBJ (MfgSpec,PERSISTENT topProcess);

void topProcess (MfgSpec * atopProcess)3I ROSEPUTLOBJ (MfgSpec,PERSISTENTjtopProcess,atopProcess);

/* Constructors *
ProcessModel 0
ProcessModel(

STR aflame,
DateRec * acreationDate,
DateRec * amodifyDate,
STR aauthor,
MfgSpec * atopProcess;

I ~/* CLASS DECLARATION EXTENSIONS *
/* Process Selection Traversal Method */
ProcessModel * SelectProcessFlow(ProductEntities)I 1~* PreOrder Process Model Display Method *
void PreOrderDisplayo;

/* PostOrder Process Model Display Method *U void PostOrderDisplay(MfgSpec *);
/* Calculates Labor Standards Associated With Selected Processes *

56

I UNCLASSIFIED

CDRL No. 0002AC-5

5 void CalculateLaborStds(int);

/* Determines Total Cost of each Process/Operation/Step */
void DetermineTotalCosto;

/* Advisor Display Method */
void AdvisorDisplayo;

#endif

1 5.2.2 MfgSpec Specification

/* Class Declaration */
#ifndef MfgSpecih
#define MfgSpec-h

#include "rose.h"
#include "process-model types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "MfgSpec.hi"

ROSEDECLARE (Process);
ROSEDECLARE (ReasoningLogic);
ROSEDECLARE (MfgSpec);
ROSEDECLARE (ListOfMfgSpec);

ROSEDECLARE (Cost);
#define MfgSpecOffsets(subClass) \

RoseStructureOffsets(subClass)\ROSESUPERCLASS_OFFSET(subClass,MfgSpec)

U ROSEDECLARE (MfgSpec) : virtual public RoseStructure
private:

STR PERSISTENTid;
Process * PERSISTENTinfo;
ReasoningLogic * PERSISTENT logic;
MfgSpecOrder PERSISTENTordering;
MfgSpec * PERSISTENTparent;
ListOfMfgSpec * PERSISTENTchildren;
MfgSpec * PERSISTENTrsibling;
ListOfRoseObject * PERSISTENT-entities;
Cost * PERSISTENT-specCost;

public:
ROSEDECLAREMEMBERS(MfgSpec);

/* Access and Update Methods */

n /, id Access Methods */
STR idO

return ROSEGETPRIM (STR,PERSISTENT-id);

void id (STR aid)I ROSEPUTPRIM (STR,PERSISTENTid,aid);

57

U UNCLASSIFIED
CDRL No. 0002AC-5

1 ~/* info Access Methods *
Process * infoO3 return ROSEGETOBI (Process,PERSISTENT-info);

void info (Process * ainfo)3 (ROSEPUTOBJ (Process,PERSISTENT-info,ainfo);

/* logic Access Methods *
ReasoningLogic * logic()
I return ROSEGE"_OBsJ (ReasoningLogic,PERSISTENTi-ogic);

void logic (ReasoningLogic *alogic) lgcaoi)

I _OEPTOJ(esnn~gcESSETlgcaoi)

/* ordering Access Methods *
MfgSpecOrder ordering()
I return ROSEGETPIM (I~m fgSpecOrder,PERSISTENT ordering);

void ordering (MfgSpecOrder aordering)3 I ROSEPUTPRIM (MfgSpecOrder,PERSISTENT ordering,aordering);I

/* parent Access Methods *
MfgSpec * parent()

I return ROSEGETý_OBJ (MfgSpec,PERSISTENTýparent);
I
v oid parent (MfgSpec * aparent)

ROSEPUTOBJ (MfgSpec,PERSISTENIý-parent~aparent); I
I* children Access Methods ~
ListOfMfgSpec * childreno;
void children (ListOfMfgSpec * achildren)

I ROSEPUT_0131 (ListOfMfgSpec,PERSISTENT-Children,achildren);

3 1~* rsibling Access Methods *
MfgSpec * rsiblingo

I return ROSE_-GET_OBI (MfgSpec,PERSISTENT rsibling);I Ivoid rsibling (MfgSpec * arsibling)
IROSEPUT_0131 (MfgSpec,PERSISTENT-rsibling,arsibling);

3 ~/*~ entities Access Methods */
ListOfRoseObject * entitieso;
v oid entities (ListOfRoseObject * aentities)

ROSEPUTOBJ (ListOfRoseObject,PERSISTENT-entities,aentities);I

/* specCost Access Methods ~
Cost * specCostO

return ROSEGETOBJ (Cost,PERSISTENT-specCost);

v oid specCost (Cost * aspecCost)IROSEPUT_0131 (CostPERSISTENT-specCost,aspecCost);I

/* Constructors */

58

3 UNCLASSIFIED
CDRL No. 0002AC-5

5 MfgSpec 0;
MfgSpec (

STR aid,
Process * ainfo,
ReasoningLogic * alogic,
MfgSpecOrder aordering,
MfgSpec * aparent,
ListOfMfgSpec * achildren,
MfgSpec * arsibling,
ListOfRoseObject * aentities,
Cost * aspecCost);

/* CLASS DECLARATION EXTENSIONS */
/* Determine Cost of Spec */
void DetermineSpecCosto;

/* Calculate Spec Labor Stds */3 void CalculateLaborStds(int);

/* Locate Spec parent in Results tree */
void LocateParent(MfgSpec *, ProductEntities *);1 /* Deep Copy MfgSpec Node */
MfgSpec *AddMfgSpec(ProductEntities *, MfgSpec *);
/* Determine if MfgSpec is Applicable to this part */
BOOL Select(ProductEntities *);
/* Display MfgSpec */
void Display(;
#endif

U 5.2.3 Process Specification

/* Class Declaration */
#ifndef Process_h
#define Process_h

#include "rose.h"
#include "process modeltypes.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Process.hi"

ROSEDECLARE (ListOfResourceUtilization);
iROSEDECLARE (Quality);ROSEDECLARE (Cost);

#define ProcessOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_S UPERCLASSOFFSET(subClass,Process)

ROSEDECLARE (Process): virtual public RoseStructure
private:

STR PERSISTENTname;

I
59I

3 ~UNCLASSI[FIED
CDRL No. OOO2AC-5

STh PERSISTENT -desc;
Li stOfResou-ceUtilization * PERS ISTE NT-resources;
Qu:ality * PERS ISTE NT-qual Results;3Cost * PERS ISTE NT-i ndiv Rate-,

public:3 ROSEDECLAREMEMI3ERS (Process);

/* Access and Update Methods *

/* name Access Methods *
STR name()

I return ROSEGETPRIM (STR,PERSISTENT name);

void name (STR aflame)
I ROSEPUTPRIM (STR,PERSISTENT-name,aname);

/* desc Access M~ethods *I ~STh desc()
I return ROSEGETPRIM (STR,PERSISTENT-desc);

S void desc (STR adesc)
I ROSEPUTPRIM (STR,PERSISTENT-des.c,adesc);

3 /* resources Access Methods */
ListOfResourceUtili2,ation * resources('-.
void resources (ListOfResourceUtilization * aresources)
I ROSEPUTOBJ (ListOfResource UtilIization,PER S ISTE NT-reso urces~aresources):,

/* qualResults Access Methods *
Quality * qualResults()

I return ROSF _GET OBJ (Quality, PERS ISTE NT'qualResu Its);

void qualResults. (Quality *a.qualResolts)

I ROSEPUTOBJ (Quality,PERSISTENT-qualResults,aqualRestilts);

/* indivRate Access Methods *
Cost * indivRateoII
void indivRatk (c.ost * aindivRate)

I ROSEPUTOBJ (Cost,PERSISTENT_indivRate,aindivRate);

/* Cons'ructors ~
Process ();
Process(

STh aname,
STR adesc,I ListOfResourceUtilization * aresources,
Quality * aqualResults,3 Cost * aindivRate);

/* CLASS DECLARATION EXTENSIONS *U ~/* Determines the Scrap and Rework Rates for the Process *

60)

U UNCLASSIFIED

CDRL No. 0002AC-5

3 virtual void DetermineScrapRework(ListOfMfgSpec *);

/* Determine Total Process Cost */
virtual Cost *TotalRate(ListOfMfgSpec *);
/* Calculate Process Quality */
virtual void CalculateQuality(int);

/* Calculate Process Time/Cost rates*
virtual void CalculateRateso;

/* Specifies if Features are complete at this Process */
virtual int CompleteFeatureso;

/* Performs Deep Copy of Process */
virtual Process *CopyProcess(ListOfRoseObject *);

/* Display for Process */
virtual void Display);

#endif

1 5.2.4 Operation Specification

/* Class Declaration */
#ifndef Operation_h
#define Operation_h

#include "rose.h"5 #include "process model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */5 #include "Operation.hi"

#include "Process.h"
ROSEDECLARE (ListOfScrap);
ROSEDECLARE (ListOfRework);
#define OperationOffsets(subClass) \

ProcessOffsets(subClass) \
ROSESUPERCLASSOFFSET(subClass,Operation)

ROSEDECLARE (Operation): virtual public Process I
private:

LaborClass PERSISTENT-optype;
ListOfScrap * PERSISTENThscraprate;

Spublic:ListOfRework * PERSISTENTrework rate;

ROSEDECLAREMEMBERS(Operation);

1 /* Access and Update Methods */

/* optype Access Methods */
LaborClass optypeO

return ROSEGETPRIM (LaborClass, PERSISTENT-optype);

I
61U

I UNCLASSIFIED
CDRL No. 0002AC-5

3 void optype (LaborCiass aoptype)
{ ROSEPUTPRIM (LaborClass,PERSISTENT optype,aoptype);)

/* scrap-rate Access Methods *
ListOfScrap * scrap~jateo;
void scrap-rate (ListOfScrap * ascrapjyate)
I ROSE_PUT_OBJ (ListOfScrap,PERSISTENT scraprate,ascrap rate); I

/* rework rate Access Methods *
ListOfRework * rework-rateO;
void rework_ryate (ListOfRework * arework-ratee),

f ROSEPUT_OBJ (ListOfRework,PERSISTENT-reworkjrate,arework rate);

/* Constructors ~I ~Operation 0
Operation(

STh aname,I STR adesc,
ListOfResourceUtilization * aresources,
Quality * aqualResults,
Cost * aindivRate,U LaborClass aoptype,
ListOfS crap * ascrap rate,3 ~ListOfRework * arework-rate)

/* CLASS DECLARATION EXTENSIONS *
/* Determine Operation Scrap and Rework Values *
void DetermineScrapRework(ListOfMfgSpec*)

void CalculateQuality(int);

/*Return if Features are complete at this operation *

3 ~ / Perform deep copy of the operation *

/* Display Operation data ~3 void Displayo;

#endif

15.2.5 Step Specification

/* Class Declaration *
#ifndef Step-h
#define Step-h

5 #include "rose.h"
#include "process model-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *I #include "Step.hi"

62

I UNCLASSIFIED
CDRL No. 0002AC-5

#define StepOffsets(subClass)icld Poesh
ProcessOffsets(subClass)\
ROSESUPERCLASSOFFSET(subClass,Step)

ROS EDECLARE (Step): virtual public ProcessI
private:

StepTypes PERSISTENT-stepType;

public:I ROSEDECLAREMEMBERS(Step);

/* Access and Update Methods *

1 1~* stepType Access Methods *
StepTypes stepType()

return ROSEGEL-PRIM (StepTypes,PERSISTENThstepType);I void stepType (StepTypes astepType)
I ROSEPUTPRIM (StepTypes,PERSISTENT stepType,astepType);

/* Constructors *
Step 0
Step(

STh aflame,
STR adesc,
ListOfl~esourceUtilization * aresources,
Quality * aqualResults,
Cost * aindivRate,
StepTypes astepType)

I ~/* CLASS DECLARATION EXTENSIONS *
/* Determine Operation Scrap and Rework Values *
void DetermiineScrapRework(ListOfMfgSpec*)I ~/* Calculate Production Qty *
void CalculateQuality(int);

/* Return if Features are complete at this operation *I mnt CompleteFeatureso;
/* Perform deep copy of the operation /

Process *CopyProcess(ListOf~oseObject*)

/* Display Operation data ~
void Displayo,I I;#endif

15.2.6 Quality Specification

/* Class Declaration *
#ifndef Quality-h

#define Quality-h

63

I UNCLASSIFIED
CDRL No. 0002AC-5

#include "rose.h"
#include "process modeL~types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *I #include "Quality.hi"

#define QualityOffsets(subClass)\
RoseStructureOffs-ets(subClass)\
ROSESUPERCLASSOFFSET(subClass,Quality)

ROSEDECLARE (Quality) : virtual public RoseStructure I
private:

float PERSISTENThscrapPercent;
int PERSISTENT-prodQty;
float PERSISTEN'T~rework~eCost;
float PERSISTENT-rework~ecent;

public: ROSEDECLAREMEMBERS(Quality);

3 /* Access and Update Methods */

I* scrapPercent Access Methods *
float scrapPercent()I return ROSEGET-PRIM (floatPERSISTENT-scrapPercent);

void scrapPercent (float ascrapPercent)

I ROSEPUTPRIM (float,PERSISTENT scrapPercent,ascrapPercent);

/* prodQty Access Methods *
int prodQty()

return ROSEGET PRIM (intPERSISTENT-prodQty);

void prodQty (int aprodQty)
I ROSEPUTPRIM (int,PERSISTENT-prodQty,aprodQty); I

/* reworkPercent Access Methods *
float reworkPercent()
f return ROSEGET PRIM (float,PERSJSTENT-reworkPercent);

void reworkPercent (float areworkPercent)
ROSEPUTPRIM (float,PERSISTENT-reworkPercent,areworkPercent);

/* reworkCost Access Methods *
float reworkCosto

I return ROSEGET-PRIM (float,PERSISTENT-reworkCost);

void reworkCost (float areworkCost)

f ROFE_PUTPRIM (float, PERS IS TENT-reworkCos t,areworkCost);

/* Constructors ~3 ~Quality 0
Quality(g float ascrapPercent,

64

I ~UNCLAS SIFIED
CDRL No. 0002AC-5

int aprodQty,
float areworkPercent,
float areworkCost);

U ~/* CLASS DECLARATION EXTENSIONS *
Quality *AddQualityo;

#endif

15.2.7 Scrap Specification
/* Class Declaration *
#ifndef Scrap-h
#define Scrap-h

#include "rose.h"5 #include "process modeltjypes.h"

/* CLASS INCLUDE-FILE EXTENSIONS *3 4#include "Scrap.hi"

ROSEDECLARE (Rules);
ROSEDECLARE (Equation);
#define ScrapOffsets(subClass)\

RoseStructureOffsets(subClass)\
ROSESUPERCLASSOFFSET(subClass,Scrap)

IROSE_-DECLARE (Scrap) :virtual public RoseStructure I
private:

Rules * PERSISTENT-scrapRule;
Equation * PERSISTENT-scrapRate;
float PERSlSTENT-scrapPercentage;

pbi:ROSEDECLAREMEMBERS(Scrap);

/* Access and Update Methods *

/* scrapRule Access Methods *
Rules * scrapRule()

I return ROSE_GET OBJ (Rules,PERSISTENT scrapRule);.

void scrapRule (Rules * ascrapRule)5 SEPUTOBJ (Rules, PERS ISTENThscrapRule,ascrapRule);

I* scrapRate Access Methods *
Equation * scrapRate()I ~ (return ROSEGETOBI (Equation,PERSISTENT scrapRate); I
void scrapRate (Equation * ascrapRate)

IROSEPUTOBJ(Equation,PERSISTENT scrapRate,ascrapRate);

I 1~* scrapPercentage Access Methods *
float scrapPercentage()

65

I UNCLASSIFIED
CDRL No. 0002AC-5

3 { return ROSEGETPRIM (floatPERSISTENT scrapPercentage);
}
void scrapPercentage (float ascrapPercentage)3 { ROSEPUTPRIM (floatPERSISTENT scrapPercentage,ascrapPercentage); }

/* Constructors */
I Scrap 0;

Scrap (
Rules * ascrapRule,

Equation * ascrapRate,
float ascrapPercentage);

/* CLASS DECLARATION EXTENSIONS */
/* Deep Copy the Scrap Object */
Scrap *CopyScrap(ListOfRoseObject *);

/* Determine if Sc rap rule should be Selected for the part under analysis */
BOOL Select(ListOfRoseObject *);
#endif

1 5.2.8 Rework Specification

/* Class Declaration *1
#ifndef Rework_h
#define Rework_h

3 #include "rose.h"
#include "fprocess model-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Rework.hi"

ROSEDECLARE (Rules);
ROSEDECLARE (Equation);
ROSEDECLARE (ListOfResourceUtilization);
#define ReworkOffsets(subClass) \

RoseStructureOffsets(subClass) \
ROSESUPERCLASSOFFSET(subClass,Rework)

ROSEDECLARE (Rework): virtual public RoseStructure I
private:

Rules * PERSISTENTreworkRule;
Equation * PERSISTENTreworkRate;
ListOfResourceUtilization * PERSISTENT-resources-
float PERSISTENTreworkPercentage;Spublic:float PERSISTENTreworkCost;

ROSEDECLAREMEMBERS(Rework);

1 /* Access and Update Methods */

6
66I

UNCLASSIFIED
CDRL No. 0002AC-5

/* reworkRule Access Methods *I ~Rules * reworkRule()
{ return ROSEGET OBJ (Rules,PERSISTENT-reworkRule);

I
void reworkRule (Rules * areworkRule)

I ROSEPUTOBJ (Rules,PERSISTENT-reworkRule,areworkRule);)

/* reworkRate Access Methods *
Equation * reworkRate()

Ireturn ROSEGETOBJ (Equation,PERSISTENTý_reworkRate);
void reworkRate (Equation * areworkRate)

I ROSEPUTOBJ(Equation,PERSISTENT reworkRate,areworkRate);)

/* resources Access Methods */I ListOfResourceUtilization * resourceso;
void resources (ListOfResourceUtilization * aresources)

I ROSEPUTOBJ (ListOfResourceUtilization,PERSISTENT-resources,aresources);

U 1/* rework-Percentage Access Methods *
float reworkPercentage()

I return ROSEGET PRIM (floatPERSISTEN'T reworkPercentage);

void reworkPercentage (float areworkPercentage)
I ROSEPUTPRIM (floatPERSISTENT reworkPercentage,areworkPercentage);

1* reworkCost Access Methods *
float reworkCost()
I return ROSEGET PRIM (float,PERSISTENT-reworkCost);

void reworkCost (float areworkCost)
I ROSEPUTPRIM (float, PERSI STENT-reworkCost,areworkCost);

/* Constructors *
Rework 0I ~Rework(

Rules * areworkRule,
Equation * areworkRate,
ListOfResourceUtilization * aresources,
float areworkPercentage,
float areworkCost);

/* CLASS DECLARATION EXTENSIONS *
/* Deep Copy Rework Object */
Rework *CopyRework(ListOfRose~bject*)
f* Determine if Rework Rule is Applicable for this part *
BOOL Select(ListOfRoseObject *pa1.t1eatuires);

#endif

5.2.9 Cost Specification

1* Class Declaration *

67

I UNCLASSIFIED
CDRL No. 000J2AC-5

#ifndef Cost h
#define Cost-h

#include "rose.h"
#include "process model-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *I #include "Cost.hi"

#define CostOffsets(subClass)\
RoseStructureOffsets(subClass)\
ROSESUPERCLASSOFFSET(subClass,Cost)

ROSEDECLARE (Cost): virtual public RoseStructureII private:
float PERSISTENT -setupTime;
float PERSISTENT runTime;
float PERSISTENT -idealTime;
float PERSISTENT-idealCost;
float PERSISTENT -actualTime;
float PERSISTENT-actualCost;

public:
ROSE_-DECLAREMEMBERS(Cost);

/* Access and Update Methods *

/* setupTime Access Methods *I ~float setupTime()
I return ROSEGETPRIM (float,PERSISTENT-SetupTime);

void setupTime (float asetupTime)
IROSEPUTPRIM (floatPERSISTENT-setupTime,asetupTime);)

3 ~/* runTime Access Methods *
float runTime()

j return ROSEGETPRIM (floatPERSISTENT-runTime);
I
void runTime (float arunTime)

I ROSEPUT_-PRIM (float,PERSISTENT-runTime arunTime);)

I I~/ idealTime Access Methods *
float idealTime()

I return ROSEGETPRIM (float,PERSISTENT-idealTime);I void idealTime (float aidealTime)
IROSEPUTPRIM (floatPERSISTENTý-idealTime,aidealTime);

I 1~* idealCost Access Methods ~
float idealCost()

return ROSEGETPRIM (float,PERS ISTE NT-ideal Cost);

void idealCost (float aidealCost)
{ROSEPUTPRIM (float, PER SlISTENT-ideal Cost,aideal Cost);

68

UNCLASSIFIED
CDRL No. 0002AC-5

/* actualTime Access Methods *
float actualTime()

I return ROSEGETPRIM (floatPERSISTENT-actualTime);

void actualTiie, (float aactualTirne)
I ROSEPUTPRIM (float,PERSJSTENT-actualTime,aactualTimne);

/* actualCost Access Methods *
float actualCost()
I return ROSEGETPRIM (floatPERSISTENT-actualCost);

void actualCost (float aactualCost)
I ROSEPUTPRIN4 (floatPERSISTENT-actualCost~aactualCost);

/* Constructors *

Cost ()
Cot(float asetupTime,

float arunTime,
float aidealTime,I float aidealCost,
float aactualTime,
float aactualCost);

/* CLASS DECLARATION EXTENSIONS *
Cost *AddCosto;

#endif

5.2.10 Resource UtilIization Specification

/* Class Declaration */
#ifndef ResourceUtilization h
#define ResourceUtilization-h

#include "rose.h"
#include "resource-schema-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *
#include "ResourceUtilization.hi"

ROSEDECLARE (Resource);
ROSEDECLARE (Equation);I ROSEDECLARE (ResourceRates);
#define ResourceUtilizationOffsets(subClass)\

RoseStructureOffsets(subClass) \
ROSESUPERCLASSOFFSET(subClass,ResourceUtilization)

ROSEDECLARE (ResourceUtilization): virtual public RoseStructure I
private:

Resource *PERSISTENT-resource;

Equation *PERSISTENT-setupTime;

69

3 UNCLASSIFIED
CDRL No. 0002AC-5

Equation * PERSISTENT runTime;
float PERSISTENT effRat-e; /* OPTIONAL *
ResourceRates * PERSISTENT-rate;

public:

ROSEDECLAREMEMBERS(ResourceUtilization);

I* Access and Update Methods ~

/* resource Access Methods *
Resource * resource()

{ return ROSEGETOBJ (Resource,PERSISTENT resource);

void resource (Resource * aresource)

I ROSEPUT-OBJ (Resource,PERSISTENT-resource,aresource);
/* setupTirne Access Methods *
Equation * setupTirne(

(return ROSEGETOBJ (Equation,PERSISTENT SetupTirne);
void setupTime, (Equation * asetupTime)

{ ROSEPUL-OBJ(Equation,PERSISTENT-setupTime,asetupTime),

/* runTime, Access Methods *
Equation * runTime()

Ireturn ROSEGETOBJ (Equation,PERSISTENT-runTime);
void runTirne (Equation *am~re unmarunTime);

I* effl~ate Access Methods *
float effRate()

return ROSEGETPRIM (floatPERSISTENT-effRate);

void effRate (float aeffRate)
I ROSEPUTPRIM (float,PERSISTENT effRate,aeffRate);

1* rate Access Methods *
ResourceRates * rate()
I return ROSEGETOBJ (ResourceRates,PERSISTENT-rate),

void rate (ResourceRates * arate)
I ROSEPUT-OBJ (ResourceRates,PERSISTENT-rate,arate);

/* Constructors */
ResourceUtilization 0
ResourceUtilization(

Resource *aresource,
Equation *asetupTime,

Equation *arunTirne,
float aeffRate,
ResourceRates * arate)

3 ~/* CLASS DECLARATION EXTENSIONS *
I* Deep Copy the ResourceUtilization Object */
ResourceUtilization * AddResourceUtilization(ListOfRoseObject*)

70

I UNCLASSIFIED
CDRL No. 0002AC-5

1 1~* Calculatge Resource Rates *
void CalculateResourceRates(ListOfRoseObject*)

3 #endif

5.2.11 Parameter Specification

I ~/* Class Declaration *
#ifndef Parameter-h3 ~#de fine Parameter-h

#include "rose.h"
#include "resource-schema-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *

#define ParameterOffsets(subClass) \

RstrcuefsssulasROSESUPERCLASSOFFSET(subClass,Parameter)

3 ~ROSEDECLARE (Parameter) : virtual public RoseStructure I
private:

STh PERSISTENT-p-name;
STR PERSISTENT-pv-alue;

public:
ROSEDECLAREMEMBERS(Parameter);

1* Access and Update Methods *

3 ~/* p-name Access Methods *
STR p~narne(

I return ROSEGETPRIM (STRPERSISTEN1ýp name);II
void p-name (STh ap-name)

ROSEPUT PRIM (STR,PERSISTENT-pname,ap-name);

3 ~ ~/* p..value Access Methods *
STR p~value()

I return ROSE_GETPRIM (STR,PERSISTENT-p-value);I void p-value (STh ap-yalue)
I ROSEPUT PRIM (STR,PERSISTENT-p-value,ap_ value);I

3 1~* Constructors *
Paramneter 0
Parameter(

STR ap-name,ISTR pvau
3 ~/* CLASS DECLARATION EXTENSIONS *

#endif

71

UNCLASSIFIED
CDRL No. 0002AC-5

5.2.12 ResourceRates Specification

/* Class Declaration *
#ifndef ResourceRates-h
#define ResourceRates-h

#include "rose.h't

#tinclude "resource-schema-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *
#include "ResourceRates.hi'

#define ResourceRatesOffsets(subClass)\
RoseStructureOffsets(subClass) \

ROSESUPERCLASSOFFSET(subClass,ResourceRates)

ROS EDECLARE (ResourceRates) :virtual public RoseStructure II private:
float PERSISTENT-setupTinie;
float PERSISTENT-runTime;
float PERSISTENT idealTime;
float PERSISTENT-idealCost;

pbi:ROSE_-DECLAREMEMBERS(ResourceRates);

/* Access and Update Methods *

/* setupTime Access Methods *
float setupTime()3 (return ROSEGETPRvIM (float,PERSISTENT-setupTime);

void setupTime (float asetupTime)3 I ROSEPUT PRIM (floatPERSISTENT-setupTime,asetupTime);

1* runTime Access Methods *
float runTirne(
I return ROSEý_GETPRIM (floatPERSISTENT-runTime);

void runTime (float arunTime)
ROSEPUT PRIM (float,PERSISTENT-runTime,arunTime);)

/* idealTime Access Methods *
float idealTime()

I return ROSEGETPRIM (float,PERSISTENT-idealTime);U I
void idealTime (float aidealTime)

f ROSE,_PUT-PRIM (floatPERSISTENT-idealTime,aidealTirne);

/* idealCost Access Methods ~
float idealCost()

return ROSEGETPRIM (float,PERSISTENT-idealCost);

72

I UNCLASSIFIED,
CDRL No. 0002AC-5

void idealCost (float aidealCost)
ROSEPUT PRIM (floatPERSISTENT-idealCost,aidealCost);

/* Constructors ~Ieoreae
ResourceRates 0

float asetupTime,I float arunTime,
float aidealTime,
float aidealCost);

I ~/* CLASS DECLARATION EXTENSIONS *
ResourceRates *AddRateso;

#endif

I 5.2.13 Resource Specification

/* Class Declaration *
#ifndef Resource-hI #define Resource-h

#include "rose.h"
#include "resource-schema-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *3 #include "Resource.hi"

ROSE_-DECLARE (ListOfParameter);
#define ResourceOffsets(subClass) \3 ~RoseStructureOffsets(subClass)\

ROSESUPERCLASSOFFSET(subClass,Resource)

ROSEDECLARE (Resource) : virtual public RoseStructure{
private":

STh PERSISTENT-resource_name;
STh PERSISTENT-resource-code;
ListOfParamneter * PERSISTENT'Lparameters;

public:5 ROSEDECLAREMEMBERS(Resource);

/* Access and Update Methods *

I ~/* resource-name Access Methods *
STR resource Iname0

I return ROSEGETPRIM (STR,PERSISTENT-resource-name);

void resource -name (STh aresource -name)
I ROSEPUT PRIM (STR,PERSTSTENT-resource-name,aresource-name';

U ~/* resource-code Access Methods *

STR resource-code()

73

I IJNCLASSIF
CDRL No. 0002,A

3 f return ROSEGETPRIM (STR,PERSISTENT-resource code);

void resource-code (STR aresource-_code)
I ROSEPUTPRIM (STR,PERSISTENT-resource-code,aresource-code);

1* paramreters Access Methods */
ListOfParameter * pararnetersO;
void parameters (ListOfParameter * aparameters)

ROSE_PUT_OBJ (ListOfParameter,PERS I STE NTLparameters,aparameters):

/* Constructors ~I ~Resource 0
Resource(

STR aresource-name,
STh aresource-code,
ListOfPai ameter * aparameters)

3 ~/* CLASS DECLARATION EXTENSIONS *
/* retrieve the resource rate ~
virtual float getRateo;,
1;I #endif

35.2.13.1 Equipment Specification

/* Class Declaration *
#indef Equiprnent-h

#define Equipment-h
#include "rseW3 #Include "resource-schemajtypes.h"

/* CLASS INCLUDE-FILE EXTENSIONS *3 #include "Equipment.hi"

#Include "Resource.h"
#define Eq4uipmentOffsets(subClass)\I ~ResourceOffsets(subClass) \

ROSESUJPERCLASSOFFSET(subClass,Equipment)

ROSEDECLARE (Equipment): virtual public ResourceI private:
STR PER SlISTE NT-equipmentCategory:,3 ~float PERS ISTENT cost-per time unit.

public:
ROSEDECLAREMEN4BERS(Equipment),

/* Access and Update Methods */

/* equipment('ategory Access Methods ~I STR equiprnentCategoryo
return ROSE_.GETPRIM (STR.PERSISTENT-equipmentCategor-v,)

74

I ~UNCLAS S IF!
CDRL No. 0002AC

void equipmentCategory (STh aequipmentCategory)
I ROSEPUTPRIM (STR,PERSlSTENT-equipmentCategory,aequipmentCategory):

U /* costperjtime_unit Access Methods *
float cost-per -time -unit(

Ireturn ROSEGETPRiM (floatPERSISTENTI'cost-per-time -unit):

void cost-per-time-unit (float acost~pertjime-unit)
ROSE_-PUT_-PRIM (floatPERSISTENT-cost-per-time unit~acost-per time unit);

1* Constructors *
Equipment 0
Equipment(IT _rsuc-ae

STR aresource name,
ListOfParameter * aparameters,
STR aequipmentCategory,I float acostper time-umit);

/* CLASS DECLARATION EXTENSIONS *I float getRateo;

3 #endif

5.2. 13.2 ConsumnableMaterial Specification

3 f* Class Declaration *1
#ifndef ConsumnableMaterial-h
#define ConsumableMaterial-h

U#include "oeh
#include "resource-schema-types.h"

I ~/* CLASS INCLUDE-.FILE EXTENSIONS *
#include 'ConsumableMaterial.hi"

3 #Include "Resource.h"
ROSE_-DECLARE (ListOfResourceConsumable);
#define Consumable MaterialOffsets(subClhss)\

ResourceOffsets(su bCl ass) \
ROS ESU PER CLAS SOFFS ET(subCl ass,Consumabke Material)

ROSEDECLARE (ConsumableMaterial) : virtual public ResourceI private:
float PERSISTENT-cost-per-unitý

pbi:ListOfResourceConsumable * PERSISTENT-resourceRates:,

ROSEDECLARE_ MEMBERS (ConsumableMaterial):,

1 1~* Access and Update Methods *

75

I UNCLASSIFIE
CDRL No. OOO2AC-

I/* cost-per -unit Access Methods *
float cost-perj-znit()

return ROSEGETPRIM (float,PERSISTENT cost._per unit);

Ivoid cost per unit (float acost-per -unit)
I ROSEPUTPRIM (float,PERSISTENT-cost-per unit,acost-per-unit);

/* resourceRates Access Methods */
ListOfResourceConsumable * resourceRateso;
void resourceRates (ListOfResourceConsurnable * aresourceRates)

ROSE_PUTOBJ
(ListOfResourceConsumable,PERSISTENT-resourceRates,aresourceRates);

/* Constructors */Iosmbe~tra
ConsumableMaterial 0

Cosumablesoateriame,
STR aresource name,
ListOfParameter * aparameters,
float acost-per unit,3 ListOfResourceConsumable * aresourceRates);

/* CLASS DECLARATION EXTENSIONS *
float getRateo;I I;#endif

35.2.13.3 ResourceConsumnable Specification

/* Class Declaration */
#ifndef ResourceConsumnable h
#define ResourceConsumableIi

#include "rose.h"

#include "resource-schema..types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *

#include "ResourceConsumable.hi"
ROSE_-DECLARE (Resource);
#define ResourceConsumableOffsets(subClass)\I os~tutue~fst~sb~as)ROSESUPERCLASSOFFS ET(subClass,ResourceConsumable)

3 ROSEDECLARE (ResourceConsumable): virtual public RoseStructure
private:

Resource * PER SISTENT-aresource;3 float PERSISTENT-units-exhausted-perjtime-unit;

3ulc ROSEDECLAREMEMBERS(ResourceConsumable);

/* Access and Update Methods *

76

U UNCLASSIFIEE
CDRL No. OOO2AC-f

3 ~/* aresource Access Methods *
Resource * aresource()3 return ROSEGEL-OBJ (Resource,PERSIST7ENT-aresource);

void aresource (Resource * aaresource)3 ROSEPUTOBJ (Resource,PERSISTENT-aresource,aaresource); I

1* units -exhaustec-per-time-unit Access Methods *
float units -exhausted-per time unit()

I return ROSEGETPRIM (floatPERSISTENT-units-exhausted-per-time-unit);

void units -exhausted~per._time-unit (float aunits-exhausted-perjtime unit)
ROSEPUTPRIM

(float,PERSISTENT units-exhausted-perjtime-unit,aunits exhaustec-per time_unit);

/* Constructors */
ResourceConsumnable~eoreosmbe0

Resource * aaresource,3 ~float aunits-exhausted-per time-unit)

/* CLASS DECLARATION EXTENSIONS *
float getUnitsConsumedo;U I;#endif

35.2.13.4 Labor Specification

/* Class Declaration *
#ifndef Labor-h
#define Labor-h

#include "rose.h"

#include "resource-schema types.h"

/* CLASS [NCLUDE-FILE EXTENSIONS *

#include "Labor.hi"
#include "Resource.h"
#define LaborOffsets(subClass)\

ResourceOffsets(subClass)\
ROS ESUPERCLAS SOFFS ET(subClass, Labor)

3 ~ROSEDECLARE (Labor) : virtual public Resource
private:

STh PERSISTENT..job-code;
LaborClass PERSISTENT I type;
float PERSISTENT-rate;

pbi:ROSEDECLAREMEMBERS(Labor);

77

I UNCLASSIFIELD
CDRL No. 0002AC-5

3 I~/ Access and Update Methods *

/* job-code Access Methods *
STR job-code()

I return ROSEGETPRIM (STR,PERSISTENT-job code);

void jobsode (STR ajob-code)

I ROSEPUTPRIM (STR,PERSISTENT-job code,ajob code);
/* 1 type Access Methods *
LaborClass l-type()

{ return ROSEGETPRIM (LaborClass,PERSISTENTL-type);

void L-type (LaborClass al~type)

ROSEPUTPRIM (LaborClass,PERSISTENT-Itype,al type);

/* rate Access Methods *fla _ae

fla aereturn ROSE_GETPRIM (float,PERSISTENT rate);

void rate (float arate)

I ROSEPUTPRIM (float,PERSISTENT-rate arate);

1* Constructors *
Labor 0

Lao STR aresource -name,

STR resorcecode,
ListOfParameter * aparameters,
STh ajob-code,
LaborClass al-type,

float arate);
/* CLASS DECLARATION EXTENSIONS *
float getRateo;

5.e.13. Facility Specification

/* Class Declaration *
#ifndef Facility-h
#define Facility-h

3 #include "rose.h"
#include "resource-schemagtypes.h"

/* CLASS INCLUDE-FILE EXTENSIONS *
#include "Facility.hi"

#include "Resource.h"I ~#define FacilityOffset~s(subClass)\
ResourceOffsets(subClass)\

78

I UNCLASSIFIED
CDRL No. 0002AC-5

ROSESUPERCLASSOFFSET(subClass,Facility)

ROSE_-DECLARE (Facility): virtual public Resource
private:

float PERSISTENT square feet-allocated;
float PERSISTENT~cost~per-sqft-perj-ime-unit;

I ~public: __

ROSEDECLARE_-MEMIBERS(Facility);

I I* Access and Update Methods */

1* squarejfeet-allocated Access Methods *
float squarejfeet allocated()

return ROSEGETPRIM (float,PERSISTENT-square feet-allocated);

void squarejfeet-allocated (float asquarejfeet allocated)
I ROSEPUTPRIM4
(float,PERSJSTENT-squarej' eet -allocated,asquarejeet~allocated);

/* costper~sqftperý_time_unit Access Methods *
float cost-per-sqj't-per -time -unit()

I return ROSE_GETý_PRIM (floatPERS1STENT-cost-per-sqit-per-time-unit);

void costper -sqjVt-per Itime_unit (float acost~per~sqft~per-time~unit)
I ROSEPUTPRIM

(float,PERSISTENT-cost-per-sqft per time-unit,acost-per sq ft-per time unit);

/* Constructors *
Facility 0
Facility(

STh aresource-name,
STh aresource -code,
ListOf Parameter * aparameters,
float asquarejfeet_allocated,
float acost~per~sqjtper-time_unit)

/* CLASS DECLARATION EXTENSIONS *I ~float getRvie();

3 #endif

5.2.14 ReasoningLogic Specification

I /* Class Declaration *I
#ifndef ReasoningLogic-h3 #define ReasoningLogic-h

#include "rose.h"
#include "process-model-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *
#include "Reason -1ngLogic. hi "

79

I UNCLASSIFIED
CDRL No. 0002AC-5

3ROSE_-DECLARE (ListOfRules);
#define ReasoningLogicOffsets(subClass)\

RoseStructureOffsets(subClass) \
ROSESUPERCLASSOFFSET(subClass,ReasoningLogic)

ROSEDECLARE (ReasoningLogic) :virtual public RoseStructure II prvateListOfRules * PERSISTENT~rules;

public: ROSEDECLAREMEMBERS(ReasoningLogic);

3 ~/* Access and Update Methods *

1* rules Access Methods *
ListOfRules * ruleso;
void rules (ListOfRules * arules)

I ROSE,_PUTOBJ (ListOfRules,PERSISTENT rules,arules);

/* Constructors */I ~ReasoningLogic 0
ReasoningLogic(3 ListOfRules *arules)

/* CLASS DECLARATION EXTENSIONS *
1* Evaluate ReasoningLogic */
BOOL Evaluate(ProductEntities*)
/* Display ReasoningLogic Data *
void Displayo;I I;#endif

3 5.2.15 Rules Specification

/* Class Declaration ~
#ifndef Rules-h
#define Rules-h

#include "rose.h"

#include "selection-rules types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *

#include "Rules.hi"
ROSE_-DECLARE (ListOfExpression);
#define RulesOffsets(subClass) \

RoseStructureOffsets(subClass)\
ROSES UPERCLAS SOFFS ET(subCl ass, Rules)

I ROSEDECLARE (Rules) : virtual public RoseStructureI
private:

80

I UNCLASSIFIED
CDRL No. 0002AC-5

3 ListOfExpression * PERSISTENT-exp 1;
BOOL PERSISTENT-moreRuleFiring;

pbi:ROSEDECLAREMEMBERS(Rules);,

I ~/* Access and Update Methods ~

/* exp 1 Access Methods */

ListOfExpression * expl10;
void expi (ListOfExpression * aexpi)

I ROSEPUTOBJ (ListOfExpression,PERSISTENT-.expl1,aexp 1);

/* moreRuleFiring Access Methods *
BOOL moreRuleFiring()

I return ROSEGETPRIM (BOOL,PERSISTENT-moreRuleFiring);
I
void moreRuleFiring (BOOL anioreRuleFiring)

I ROSEPUJTPRIM (BOOL,PERSISTENT-moreRuleFiring,amoreRuleFiring);

1* Constructors *I ~Rules 0
Rules(

ListOfExpression * aexp 1,

BOOL amoreRuleFiring);
/* CLASS DECLARATION EXTENSIONS *3 /* Evaluate Rules */
BOOL Evaluate(ProductEntities *", ListOfRoseObject*)

/* Display Rules *
void Displayo;

#endif

5.2.16 Expression Specification

/* Class Declaration *
#ifndef Expression-h
#define Expression-h

/* Class Expression *
#include 'trose.h"
#include rsselection-rules-types.h"
ROSE_-DECLARE (Equation);
ROSE_DECLARE (ComplexExp);
ROSEDECLARE (SimpleExp);
ROSEDECLARE (Stuing Value);

/* CLASS INCLUDE-FILE EXTENSIONS *

#include "Expression. hi"

81

I UNCLASSIFIED
CDRL No. 0002AC-5

3 #define ExpressionOffsets(subClass) \
RoseUnionOffsets(subClass) \
ROSESUPERCLASSOFFSET(subClass,Expression)

IROSE_-DECLARE (Expression): public RoseUnion I
public:

I ROSEDECLAREMEMBERS(Expression);

I* Access and Update Methods *I BOOL isEquation()
f return (getAttribute() == getAttribute("_Equation"));

Equation * -Equation()

return ROSEGEL-OBJ (Equation,PERSISTENT-data.value.aPtr),

void -Equation (Equation * a.Equation)
{ this->putAttribute('LEquation");U f(ROSE0PT-OBJ(EqationPERSISTENT-data.value.aPtr,aEquation);

IBOOL isCmle~p
I return (getAttribute() == getAttribute("-ComplexExp"));I ComplexExp * -ComplexExp()
I return ROSEGETOBJ (ComplexExp,PERSISTENT-data.value.aPur);

3 void -ComplexExp (CornplexExp * a-ComplexExp)
this->putAttribute("-ComplexExp");
if (!ROSE.erfror)

I ROSEPUTOBJ(ComplexExp,PERSISTENT-data.value.aPtr,a-ComplexExp); I

BOOL is-SimpleExpo
f return (getAttribute() == getAttribute("_SimpleExp"));

I
SimpleExp * -SimpleExp()

return ROSE_GEL-OBJ (SirnpleExp,PERSISTENT-data.value.aPtr);

void -SirnpleExp (SimpleExp * a-SimpleExp)
I this->putAttribute("-SimpleExp");

if (!ROSE.erfror)
ROSEPUTL-OBJ(S impleExp,PERS ISTENT-data. value. aPtr,aS SimpleExp);

3 BOOL is-StringValue()
return (getAttribute() == getAttribute("_String Value"));

String Value * -String Value()

I return ROSE_GEL-OBJ (StringValue,PERSISTENT-data.value.aPtr),
void _Str'ngValue (String Value * aStringValue)

th is->putAttribute('iString Value");

82

I UNCLASSIFIED
CDRL No. 0002AC-5

3 ROSE_PUTOBJ(StringValue,PERSISTENTdata.value.aPtr,a StringValue);

I /* Constructor */

Expression 0;

i /* CLASS DECLARATION EXTENSIONS */
/* Evaluate Expression */
TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);

I /* Display Expression */
void Display);I I
#endif

1 5.2.17 ComplexExp Specification

/* Class Declaration */
#ifndef ComplexExp-h
#define ComplexExp-h

#include "rose.h"3 #include "selectionrulestypes.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ComplexExp.hi"

ROSEDECLARE (Equation);
ROSEDECLARE (Expression);
#define ComplexExpOffsets(subClass) \

RoseStructureOffsets(subClass)\ROSE_SUPERCLASSOFFSET(subClass,ComplexExp)

3 ROSEDECLARE (ComplexExp) : virtual public RoseStructure {
private:

Equation * PERSISTENTEqul;
EquivOp PERSISTENTEquivOp1;
Expression * PERSISTENTExp 1;

public: ROSEDECLAREMEMBERS(ComplexExp);

/* Access and Update Methods */

/* Equ I Access Methods */
Equation * Equl()

Ireturn ROSE_GET_OBJ (Equation,PERSISTENTEqul);
void Equ I (Equation * aEqu 1)
I ROSEPUT_OBJ(Equation,PERSISTENTEqu 1 ,aEqu 1); }

I /* EquivOpl Access Methods */
EquivOp EquivOp 10

I
83I

I UNCLASSIFIED
CDRL No. 0002AC-5

3 { return ROSEGET.YRIM (Equiv-0p,PERSISTENTLEquiv~p 1);

void EquivOp I (Eq uiv-Op aEquivOp, 1)3 I ROSEPUTPRIM (EquivOp,PERSISTENT Equiv~pl,aEquiv~pl):. I

/* Exp I Access Methods *
Expression * Expl()

Ireturn ROSEGETOBJ (Expression,PERSISTENTLExpl)I)I
void Exp I (Expression * aExp 1)
I ROSEPUTOBJ(Expression,PERSISTENT Expl,aExpl); I

/* Constructors ~
ComplexExp 0
ComplexExp(I Equation * aEqul,

Equiv-Op aEquivOp, 1,
Expression * aExpI),

/* CLASS DECLARATION EXTENSIONS *
TokenReturnValue Evaluate(BOOL &, ProductEntities *,ListOfRoseObject*)3 void Displayo;

#endif

1 5.2.18 SimpleExp Specification

/* Class Declaration ~
#ifndef SimpleExp-h
#define SimpleExpj~

3 #include "rose.h"
#include 'selection-rules-types.h"

/* CLASS INCLUDE-FILE EXTIENSIONS *I #include "SimpleExp.hi"

ROSEDECLARE (DataDictStr);
#define SimpleExpOffsets(subClass)\

RoseStructureOffsets(subClass)\
ROSESUPERCLASSOFFSET(subClass,SimpleExp)

ROSE_-DECLARE (SimpleExp) : virtual public RoseStructure
private:

Unaiy-Op PERSISTENTNoti;

DataDictStr * PERSISTENTDataDictVar;

public:

ROSEDECLAREMEMBERS(SimpleExp);
/* Access and Update Methods *

I ~/* Noti Access Methods *
U nary-Op NotlI(

84

3 UNCLASSIFIED
CDRL No. 0002AC-5

t return ROSEGEL-PRIM (Unary-Op,PERSISTENTNot I);

void Noti (UnaryOp aNoti)3 ROSEPUTPRIM (Unary_)p,PERSI STENTNot LaNotl1);)

1* DataDictVar Access Methods *
DataDictStr * DataDictVar()

I return ROSEGET-OBJ (DataDictStr,PERSISTENTDataDictVar);

void DataDictVar (DataDictStr * aDataDictVar)

I ROSEPUTOBJ (DataDictStr,PERSISTENTDataDictVar,aDataDictVar);)

/* Constructors *
SimpleExp 0I ~SimpleExp(

Unary-Op aNoti,5 DataDictStr * aDataDictVar);

/* CLASS DECLARATION EXTENSIONS *
TokenRetumnValue Evaluate(BOOL &, ProductEntities *,ListOfRoseObject*)3 void Display0;

#endif

5 5.2.19 Equation Specification

/* Class Declaration ~
#ifndef Equation-h
#define Equation-h

/* Class Equation *
#include "rose.h"
#include "selection-rules-types.h"
ROSEDECLARE (Term);
ROSEDECLARE (ComplexEquation);

/* CLASS INCLUDE-FILE EXTENSIONS *
#include "Equation.hi"

#define EquationOffsets(subClass)\

osnonfstsulasROSESUPERCLASSOFFSET(subClass,Equation)

U ~ROSE_DECLARE (Equation) : public RoseUnion I
public:

5 ROSEDECLAREMEMBERS(Equation);

/* Access and Update Methods *
BOOL is-Term()

I return (getAttribute() == getAttribute('iTerm"));

85

I UNCLASSIFIEDj
CDRL No. 0O02AC-5

Termn * -Term()
return ROSE_-GET OBJ (Term,PERS!S TE NT-data. value. aPtr);

void _Term (Term * aTerm)* this->putAttribute('iTerm");
if (!ROSE.errorO)3 ROSEPUT OBJ(Term,PERSISTENT-data.value.aPtr,aTerm);

BOOL isComplexEquation()
Ireturn (getAttribute() == getAttribute(i-ComplexEquation"));II

ComplexEquation * _ComplexEquation()
I return ROSE_-GETL-OBJ (ComplexEquation,PERSISTENT-data.value.aPtr);

I void _ComplexEquation (ComplexEquation * a-ComplexEquation)
I this->putAttribute("-ComplexEquation");

if (!ROSE.errorO)

ROSEPUL-OBJ(ComplexEquation,PERSISTENTrdata.value.aPtr,a .ComplexEquati
on);)

/* Constructor *

3 Equation 0;

/* CLASS DECLARATION EXTENSIONS *
TokenReturnValue Evaluate(BOOL &, ProductEntities *,ListOfRoseObject*)

void Displayo;

#endif

5.2.20 ComplexTerm Specification

/* Class Declaration *
#ifndef ComplexTerm -h
#define ComplexTerm-h

I #include "rose.h"
#include "selection-rules-types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *I#include "ope~r~i

ROSEDECLARE (Equation);I ~#define ComplexTermOffsets(subClass)\
RoseStructureOffsets(subClass) \3 ROSESUPERCLASSOFFSET(subClass,ComplexTerm)

ROSEDECLARE (ComplexTerm): virtual public RoseStructure
private:

Equation * PERSISTENT equI;
Mult_-Div-Oper PERSISTEfNtOperI;
Equation * PERSISTENT-equ2;

86

I UNCLASSIFIED
CDRL No. 0002AC-5

1 public:
ROSEDECLAREMIEMBERS(CumplexTerm);

1 ~/* Access and Update Methods *

/* equlI Access Methods */
Equation * equ 10)

I return ROSEGET_-OBJ (Equation,PERSISTENTLequl);)
void equ 1 (Equation * aequ I)

IROSEPUTLOBJ(Equation,PERSISTENTLequl1,aequ 1);

/* Operl Access Methods ~
Mult_DivOper OperlI()

I return ROSEGETPRIM (Mult-DivOper,PERSISTENT Oper 1);

void Operl (Mult -Div-Oper aOperl)

I ROSEPUT_PRIM (Mult Div-Oper,PERSIST7ENL-Or ',aOper 1);

/* equ2 Access Methods *
Equation * equ2()

(return ROSE_-GET_-OBJ (Equation,PEkSISTENTLequ2);
void equ2 (Equation * aequ2)3 1 ROSEPUTLOBJ(Equation,PERS ISTENT-equ2,aequ2);

/* Constructors *
ComplexTerm 0

CmexemEquation * aequl1,
MultDiv-Oper aOper 1,3 Equation * aequ2);

/* CLASS DECLARATION EXTENSIONS *
TokenReturnValue Evaluate(BOOL &, ProductEntities *,ListOfRoseObject*)

void Displayo;

5.nd21 ComplexEquation Specification

#ifndef ComplexEquation-h
#define ComplexEquation-h

I #include "rose.h"
#include "selection-rules_types.h"

3 ~/* CLASS INCLUDE-FILE EXTENSIONS *
#include "ComplexEquation.hi"

ROSEDECLARE (Term);
ROSEDECLARE (Equation);
#define ComplexEquati onOffsets(subClass)\

87

I UNCLASSIFIED
CDRL No. 0002AC-5

3 ~RoseStructureOffsets(subClass)\
ROSESUPERCLASSOFFSET(subClass,ComplexEquation)

ROSEDECLARE (ComplexEquation): virtual public RoseStructure I
private:

Term * PERSISTENTVail;
Add..Sub Oper PERSISTENT-Openl;

Equation -* PERSISTENT-Value;

public:
ROSEDECLAREMEMBERS(ComplexEquation);

/* Access and Update Methods *

1 ~/* VarIl Access Methods ~
Term * VarlI()

(return ROSE_-GETL-OBJ (Term,PERSISTENTVail);I void VarIl (Term * aVarIl)
I ROSE_-PUT_-OBJ(Term,PERSISTENTVail,aVarl);

/* Oper 1 Access Methods *
Add_-Sub_-Oper OperlI()

return ROSEGETPRIM (Add&Sub-Oper,PERSIST7ENT-Operl);

3void Oper (AddSub-Oper a~perl)
I ROSEPUTPRIM (AddSub-Oper,PERSISTENTOperl,aOperl);

/* Value Access Methods *
Equation * Value()

I return ROSE_-GETL-OBI (Equation,PERSISTENT Value);
v oid Value (Equation * aValue)

ROSEPUTOBJ(Equation,PERSISTENTValue,aValue); I
/* Constructors */
ComplexEquationomlxuaon;

Term * aVail,
Add-Sub Oper aOper 1,

Equation -* aValue);

/* CLASS DECLARATION EXTENSIONS *
TokenRetumValue Evaluate(BOOL &, ProductEntities *,ListOfRoseObject*)

1;
#endif

g 5.2.22 ParenEquation Specification

/* Class Declaration *
#ifndef PaienEquation-h

#define PaienEquation-h

#include "rose.h"

I ~UNCLASS IFIED
CDRL No. 0002AC-5

#include "selection-rules types.h"

/* CLASS INCLUDE-FILE EXTENSIONS *3 #include "ParenEquation.hi"

ROSE_-DECLARE (Equation);
#define ParenEquationOffsets(subClass)\Uoetutr~fst~u~as \

RetutrefetsulasROSESUPERCLASSOFFSET(subClass,ParenEquation)

ROSEDECLARE (ParenEquation): virtual public RoseStructure II private-:
LParen PERSISTENT_-Lparenthesis;
Equation * PERSISTENL-Equ;

RParen PERSISTENTRparenthesis;

public:
ROSEDECLAREMEMBERS(ParenEquation);

/* Access and Update Methods */

1 1~* Lparenthesis Access Methods *
LParen Lparenthesis()

I return ROSEGETPRIM (LParen,PERSISTENT-Lparenthesis);

void Lparenthesis (LParen aLparenthesis)
I ROSEPUTPRIM (LParen,PERSISTENTLparenthesis,aLparenthesis);£ 1~* Equ Access Methods *

Equation * Equo
Ireturn ROSE_-GETLIOBI (Equation,PERSISTENT-Equ);

void Equ (Equation * aEqu)
I ROSE_-PUT_-OBJ(Equation,PERSISTENTEqu,aEqu);

3 ~/* Rparenthesis Access Methods *
RParen Rparenthesis()

I return ROSEGETPRIM (RParen,PERSISTENT-Rparenthesis);

I void Rparenthesis (RParen aRparenthesis)
I ROSEPUT_-PRIM (RParen,PERSISTENT Rparenthesis,aRparenthesis);

/* Constructors *
ParenEquation 0
ParenEquation(3 LParen aLparenthesis,

Equation * aEqu,
RParen aRparenthesis)

I ~/* CLASS DECLARATION EXTENSIONS *
TokenReturnValue Evaluate(BOOL &,ProductEntities ",ListOfRoseObject*)3 void Displayo;

#endif

89

5 UNCLASSIFIED
CDRL, No. 0002AC-5

3 5.2.23 Term Specification

/* Class Declaration *
#ifndef Term h
#define Term-h

I /* Class Term */
#include "rose.h"
#include "selection -rules,_ypes.h"
ROSE_-DECLARE (Const);
ROSE_-DECLARE (DataDictStr);
ROSE_-DECLARE (ParenEquation);

R ROSEDECLARE (ComplexTerm);
/* CLASS INCLUDE-FILE EXTENSIONS *5 #include "Term.hi"

#define TermOffsets(subClass)\
RoseUnionOffsets(subClass)\
ROSESUPERCLASSOFFSET(subClass,Term)

ROSE_-DECLARE (Term) : public RoseUnionI public:
ROSEDECLAREMEMBERS(Term);

I ~/* Access and Update Methods *
BOOL isConst()

I return (getAttribute() == getAttribute('iConst"));

Const * _Consto
return ROSEGETOBJ (Con st,PERS ISTENT-data.value. aPtr);

Bvoid _ Const (Const * a -Const)
I this->putAttribute('lConst');

if (!ROSE.erfror)
ROSEPUTOBJ(Const,PERSISTENT-data.value.aPtr,aConst);

BOOL isDataDictStr()
I return (getAttribute() == getAttribute("-DataDictStr'));

DataDictStr * DataDictStrO
Ireturn ROSEGETOBJ (DataDictS tr,PERS ISTE NT-data.val ue.aPtr);

void _ DataDictStr (DataDictStr * a_-DataDictStr)
this->putAttribute('iDataDictStr');
if (!ROSE.erfror)

ROSEPUTOBJ(DataDictStr,PERSISTENT-data.value.aPtr,a-DataDictStr);

IBOOL, is_-Prnqain
Ireturn (getAttribute() == getAttribute(".j'arenEquation"));

90

U ~UNCLAS SIFIED
CDRL No. 0002AC-5

ParenEquation * _ParenEquation()
I return ROSE_-GETOBJ (ParenEquation,PERSISTENT-data.value.aPtr);)

Ivoid _ ParenEquation (ParenEquation * aParenEquation)
this->PutAttribute('iParenEquation");5 if (!ROSE.erroro)

ROSEPUTOBJ(ParenEquation,PERSISTENT-data.value.aPtr,a-ParenEquation);

U ~BOOL isComplexTerm()
return (getAttribute() == getAttribute('lComplexTermn"));

ComplexTerm * _ComplexTerm()

I return ROSE_GET_OBI (ComplexTerm,PERSISTENT-data.value.aPtr); I
v oid _ComplexTen-m (ComplexTerm * aComplexTerm)

this->putAttribute('iComplexTerm");
if (!ROSE.erroro)

ROSEPUTOBJ(ComplexTerm,PERSISTENT-data.value.aPtr,a ComplexTerm);

1* Constructor *

£ Term 0);

/* CLASS DECLARATION EXTENSIONS *

T~iokenReturnValue Evaluate(BOOL &, ProductEntities ~,ListOfRoseObject*)

5 #endif

5.2.24 Const SpecificationB ~/* Class Declaration *
#ifndef Const-h

S #define Const-h

/* Class Const */
#include "rose.h"
#include "selection-rules types.h"

/*CLASS INCLUDE-FILE EXTENSIONS *U #include "Const.hi"

#define ConstOff~sets(subClass) \

ReninfsssulssROSESUPERCLASSOFFSET(subClass,Const)

ROSEDECLARE (Const) : public RoseUnionI public:

91

I UNCLASSIFIED
CDRL No. 0002AC-5

ROSEDECLAREMEMBERS(Const);

/* Access and Update Methods */
BOOL is-float()

return (getAttribute() == getAttribute("ifloat"));

float _float()

I return (float) ROSEGETPRIM (float,PERSISTENT-data.value.aFloat); I
void _ float (float a -float)
I this->putAttribute("-float");

if (!ROSE.erroro)

BOOLis-ntoROSEPUTPRIM(float,PERSISTENT-data.value.aFloat,a
float); I

I return (getAttribute() = getAttribute('iint"));

It ntreturn (int) ROSEGET PRIMv (int,PERSISTENT-data.value.anlnt);

void _it (int a int)
I this->p-utAttribute(Q'Jnt");

if (!ROSE.erroro)I ~ROSEPUTPRIIM(int,PERSIS;TENT-data.value.anlnt~a int);

I* Constructor ~

5 Const 0);

/* CLASS DECLARATION EXTENSIONS *
TokenReturnValue Evaluateo;S void Display0;

5 #endif

5.2.25 Addition/Subtraction Specification

I /* Enumerated Type */
#ifndef Add -Sub -Oper -h
#define Add SubOper_h

#include "roseHdefs.h"
enumn Add_-Sub...OperI

Add-Sub-per_NULL = NULLENUM,
Add - ub -Oper_Add = 0,
Add-Sub-OperSubtract

ROSE_-DECLAREPRIM (Add-Sub -Oper);

92

I ~UNCLAS SIFIED
CDRL No. 0002AC-5

5.2.26 Multi plication/Di vision Specification

/* Enumerated Type */
#ifndef Mult -Div Oper-h
#define Mult-Div Oper-h

#include "roseHdefs.h"
enum Mult -DivOperI

Mult -Div Oper_-NULL = NULLENUM,
Mult -Div-Oper -Multiply = 0,
Mult Div OperDivide

ROSE_-DECLAREPRIM (Muh -DivOper);Iedi
5.2.27 UnaryOp Specification

I ~/* Enumerated Type *
enumn Unry-Op I

Unary-Op-NULL = NULLENUM,
1;Unary-Op-UOp = 0

1 5.2.28 Equiv_Op Specification

/* Enumerated Type *
enumn Equiv-OpI

Equiv-Op-NULL = NULLENUM,
Equiv-Op-Less = 0,
Equiv-Op-LessEqual,
Equiv-Op-Greater,
Equiv -Op-GreaterEqual,
Equiv-Op-Equal,

I; Equiv-Op-NotEqual

1 5.2.29 StringValue Specification

/* Class Declaration */
ROSE_-DECLARE (String Value) :virtual public RoseStructure

DQuote PERS ISTENT-quote 1;
STR PERSISTENT_valuel;
DQuote PERSISTENT-quote2;

pbi:ROSEDECLAREMEMBERS(StringValue);

I* Access and Update Methods *
/* quote I Access Methods *

reuteurn Rl() GETPRIM (DQuote,PERSISTENT...quote 1);

93

I UNCLASSIFIED
CDRL No. 0002AC-5

void quote 1 (DQuote aquote 1)
IROSEPUT PRIM (D)Quote,PERSISTENT -quote 1 ,aquote 1),

I ~/* value 1 Access Methods */
STR value 10)

return ROSEGETPRIM (STR,PERSISTENT-valuel);I Ivoid value 1 (STR avaluel)
ROSEPUL-PRIM (STR,PERSISTENT-valuel,avaluel);

1' 1/* quote2 Access Methods *
DQuote quote2()

I return ROSEGETPRIM (DQuote,PERSISTENT-quote2);

void quote2 (DQuote aquote2)
{ ROSEPUTPRIM (DQuote,PERSISTENT-quote2,aquote2);

1* Constructors ~
String Value 0
String Value(I DQuote aquote 1,

STh avaluelI,if ~DQuote aquote2)

/* Methods Implementation *S trngale:Stin~auePERSISTENTLquotel =(DQuote) NULL.YNUM;
PERSISTENT-value 1 = NULL;
PERSISTENT-quote2 = (DQuote) NULL-ENUM;

ROSECTOREXTENSIONS;

5 ~StringValue::StringValue(
DQuote aquotel,
STR avaluel,
DQuote aquote2)

quotel (aquotel);
valuel (avaluel);

quote2 (aquote2);

5.2.30 DataDictStr Specification

5 /* Abstract Base Class Declaration */
ROSEDECLARE (DataDictStr) :virtual public RoseStructure
private:

I ~public: _

ROSEDECLAREMEMBERS(DataDictStr);

94

I UNCLASSIFIED
CDRL No. 0002AC-5

1 ~/* Access and Update Methods *
/* Constructors *
DataDictStr ;

/* Methods Implementation *

DataDictStr::DataDictStr ROETRXTNIOS
ROECOIXESOS

I ~/* CLASS EXTENSIONS *
virtual TokenReturnValue Evaluate(BOOL&, ProductEntities ",ListOfRoseObject*)

virtual void DisplayC);

5.2.30.1 EntityName Specification

/* Class Declaration *"I
ROSEDECLARE (EntityName) : virtual public DataDictStr I
private:

STR PERSISTENT-name;

public:5 ROSEDECLAREMEMBERS(EntityName);

/* Access and Update Methods ~
1* name Access Methods *
STh name()

void nam ROSEGETPRIM (STR,PERSISTENT-name);

3odnm (STh aflame)
I ROSPUTPRIM (STR,PERSISTENT-name,aname);)

/*Constructors *
EntityName 0
EntityName ne)

/* Methods Implementation *
EntityName::EntityName 0()

PERSISTENT-name = NULL;
ROSECTOREXTENSIONS;

EntityName::EntityName(
STR aname)

name (aname);
ROSECTOREXTENSIONS;

I ~/* CLASS EXTENSIONS *

virtual TokenReturnValue Evaluate(BOOL&, ProductEntities *,ListOfRoseObject*)

95

UNCLASSIFIED

CDRL No. 0002AC-5

5 virtual void Displayo;

5.2.30.2 EntityAttrName Specification

I /* Class Declaration */
ROSEDECLARE (EntityAttrName) : virtual public DataDictStr{
private:

ListOfString * PERSISTENT-entityNamne;
STR PERSISTENT-attrName;

pbi:ROSEDECLAREMEMBERS(EntityAttrName);

/* Access and Update Methods ~
/* entityNamne Access Methods *
ListOfString * entityNameo;
v oid entityNamne (ListOfString *aentityNamne)

IROSEPUTOBJ (ListOfString,PERSISTENT-entityName,aentityName);

/* attrNamne Access Methods ~
STh attrNamne(

I return ROSEGETPRIM (STR,PERSISTENT-attrName);

II
vod ROSEPUTPRIM (STR,PERSISTENT-attrName,aattrName);)

/* Constructors ~

EntityAttrName~niytrae0
ListOfString * aentityNamne,
STh aattrNane);

/* Methods Implementation *
EntityAttrName::EntityAttrName0

PERSISTENT-entityNamne = NULL;
PERSISTENT-attrNamne = NULL;
ROSECTOREXTENSIONS;

Entity AttrName:: EntityAttrName(
ListOfString * aentityName,
STR aattrName

entityNamne (aentityName);

attrNane (aattrNarne)

ListOfString * EntityAttrName ::entityName0
I if(!PERSISTENT-entityName)I if(this->isPersistento)

entityNamne (pnewln (designo) ListOfString);

96

-- UNCLASSIFIED
CDRL No. 0002AC-5

else entityName (new ListOfString);
return ROSEGETOBJ (ListOfString,PERSISTENT entityName);

/* CLASS EXTENSIONS */I virtual TokenReturnValue Evaluate(BOOL&, ProductEntities *, ListOfRoseObject *);
virtual void Displayo;

I 5.3 Analyzer

The manufacturing Analyzer is a subsystem of MO which is responsible for performing the

manufacturability analysis on a product database based on the selected process model. The3 Analyzer provides the user with the ability to perform a process selection, calculate yield and

rework, and calculate time and cost. The Advisor uses the output of the Analyzer runs which it

1 then displays to the user. Following is the corresponding specification and methods for the

Analyzer class/object.

1 /* Class Specification */
#ifndef Analyzer h
#define Analyzer-h

#include "rose.h"

/* CLASS iNCLUDE-FILE EXTENSIONS */
#include "Analyzer.hi"

ROSEDECLARE (ProcessModel);
#define AnalyzerOffsets(subClass) \

RoseS tructureOffsets(subClass) \
ROSESUPERCLASSOFFSET(subClass,Analyzer)

ROSEDECLARE (Analyzer): virtual public RoseStructure I
private:p t STR PERSISTENT-productDesignName;

ProcessModel * PERSISTENTpModel;
ProcessModel * PERSISTENT-plan;

_public:

ROSEDECLAREMEMBERS(Analyzer);

3 /* Access and Update Methods */

/* productDesignName Access Methods */
STR productDesignName()S I return ROSEGETPRIM (STR,PERSISTENT-productDesignName);

void productDesignName (STR aproductDesignName)
ROSEPUTPRIM (STR,PERS ISTENT-productDesignName,aproductDesignName);

97I

UNCLASSIFIED
CDRL No. 0002AC-5

/* pModel Access Methods */
ProcessModel * pModel()
I return ROSEGETOBJ (ProcessModel,PERSISTENT-pModel);
void pModel (ProcessModel * apModel)
I ROSEPUTOBJ (ProcessModel,PERSISTENT pModel,apModel);

/* plan Access Methods */
ProcessModel * plano
I return ROSEGETOBJ (ProcessModel,PERSISTENTplan);

void plan (ProcessModel * aplan)
ROSEPUTOBJ (ProcessModel,PERSISTENTplan,aplan); }

/* Constructors */
Analyzer 0;
Analyzer (

STR aproductDesignName,
ProcessModel * apModel,
ProcessModel * aplan);

/* CLASS DECLARATION EXTENSIONS */
void PerformAnalysiso;
-- };

#~endif

5.4 Advisor

The Advisor is responsible for displaying the results produced by each process selected5 during an Analyzer run. The user can select analysis runs to view. The user can di:.)lay

process, yield, rework, or costing results as graphs, and can also view complete analysis data

3 to the screen or to file in report format.

The Advisor graphs are implemented using XRT/Graph for Motif widget which displays

data graphically in a window. The graph widget has resources which determine how the graph

will look and behave. We will be writing methods that will take the output results from the

Analyzer subsystem, and display them as pictured in section 4.3 of the Advisor user interface

3 screens section.

The graph widget has resources which allow programmatic control of the following items:
0 graph type (bar, stacked bar, line, and pie).

* header and footer positioning, border style, text, font, and color.
- data styles: line colors and patterns, fill color and patterns, line thickness, point

style, size and color.
* legend positioning, orientation, border ityle, anchor, font and color.

98I

I UNCLASSIFIED

CDRL No. 0002AC-5

* graph positioning, border style, color, width, heoht, and 3D effect.
* point and set labels.
° axis maximum and minimum, numbering increment, tick increment, grid increment,

font, origin, and precision.
* window background and foreground color.
• text areas.
• double buffering.
° axis inversion.

• data transposition.

• marker positioning.

XRT/graph also provides several procedures and methods which allocate and load data

structures containing the numbers to be graphed, output a representation of the graph in

Postscript format, assist the developer in dealing with user-events, and assist the developer

with setting and getting indexed resources.

5.5 Modeler

The process Modeler provide-; the ability for capturing and modifying manufacturingI process models. The Modeler provides a graphical user interface where the user can capture

process, operation, a,,d step activities, as well as, the corresponding selection rules and

resources. The output of the Modeler is a ProcessModel object which is structured as a

hierarchical tree of manufacturing activities. Each activity points to either process, operation, or

i step data. The ProcessModel object is used by the Analyzer and the Advisor to select the

manufacturing processes that are used in the cost, yield, and rework calculations. Following is

the corresponding specification and methods for the Modeler class/object.

/* Class Specification */
ROSEDECLARE (M,,deler) virtual public RoseStructureprivate:

ProcessModel * PERSISTENTcurrenLmodel;
public: ROSEDECLAREMEMBERS(Modeler);

/* Access and Update Methods */
/* currentmodel Access Methods */
ProcessModel * current-model()

return ROSE_GETOBJ (ProcessModel,PERSISTENT current model);I ,
void currentmodel (ProcessModel * acurrent model)

ROSEPUTOBJ (ProcessModel,PERSISTENTcurrentmodel,acurrent-model); }

i
99

I

I UNCLASSIFIED
CDRL No. 0002AC-5

/* Constructors */
Modeler 0;
Modeler (

ProcessModel I acurrentmodel);
/* CLASS DECLARATION EXTENSIONS */
ProcessModel *readModel0;
void writeModel0;

10I
I
I
I
I
I
I
I
I
I
I
I
I

100I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

UNCLASSIFIED

CDRL No. 0002AC-5

II 6. Database EXPRESS Schemas
This section defines the schemas of data to be used by MO. Schemas are defined for

process model data, resource data, selection rule and equation data, and PWB product data.

The schemas are defined in the modeling languages EXPRESS and EXPRESS-G.

EXPRESS is an emerging International Standards Organization (ISO) language for the

specification of information models. It was originally developed to enable a formal

specification of the forthcoming ISO 10303 standard, familiarly known as STEP. The language

is also increasingly being used in many other contexts, for example in the mechanical,

electronic and petro-chemical industries, as well as in other national and international standards

I efforts. EXPRESS-G is a graphical subset of the EXPRESS language. The graphical nature of

EXPRESS-G makes' it a valuable tool for understanding and analyzing information models.

6.1 Process Model Schema Specification

I In order to perform cost and yield analysis on a design, the manufacturing process must be

modeled. The MO process model supports a hierarchical tree based model of a manufacturing

I enterprise. Processes, operations and steps are defined for a manufacturing activity. Rules are

defined which tie the product data to the processes, operations and steps. The selection rules, if

satisfied, will trigger the selection of that process, operation or step.

An object-oriented methodology has been employed to implement the model. To represent

processes, operations, and steps in the tree structure, a generic Manufacturing Activity class

named "MfgSpec" was defined. The MfgSpec objects contain information that is common to

processes, operations, and steps. Within each MfgSpec is a reference to an "info" object. This

info object contains the information specific to the type of manufacturing activity being

modeled (i.e. process, operation, or step).

* The Manufacturing Analyzer's selection methodology is done by traversing the process

model in depth-first fashion. The logic at each manufacturing activity node will be evaluated to

see if this is an applicable path to follow. The selected nodes are added to an analysis tree

which is also modeled as a general purpose tree structure. After the entire process model has

3 been evaluated and the applicable nodes identified, the analysis tree created during process

selection is traversed in a post-order fashion so that the time and cost can be calculated.

I
101I _ _ _ _ _ _ _ _ _ _ _ _ _ _

UNCLASSIFIED

CDRL No. 0002AC-5

The EXPRESS model specified in this section was created for process model

representation. Figure 6.1-1 is an EXPRESS-G representation of the same model.

6.1.1 EXPRESS Schema for Process Model

This EXPRESS schema listing defines the process model. The process model schema

references the resourceschema, as well as some predefined constants and types. The

specification of the additional schema will follow.

EXPRESS Specification:

INCLUDE 'resource.exp';

SCHEMA process_model;

REFERENCE FROM resource-schema;

CONSTANT

-- Constants to Aid in Part Entity Status Markings
AVAILABLE: INTEGER := 0;
TESTING : INTEGER := 1;
TESTED : INTEGER:= 2;
PROCESSED: INTEGER := 3;
COMPLETED: INTEGER := 4;

-- Ordering Constants
SEQUENTIAL: INTEGER := 0;
CONCURRENT: INTEGER := 1,

-- Step Type Constants
SETUP : INTEGER := 0;
RUNTIME : INTEGER := 1;

ENDCONSTANT;

TYPE MfgSpecOrder = ENUMERATION OF

(SEQUENTIAL, CONCURRENT);
ENDTYPE;

TYPE StepTypes = ENUMERATION OF
(SETUP. RUNTIME);

ENDTYPE;

TYPE PartEntityStatus = ENUMERATION OF
(AVAILABLE. TESTING. TESTED, PROCESSED, COMPLETED);

ENDTYPE;

I
I

102I

UNCLASSIFIED
CDRL No. 0002AC-5

6.1.1.1 ProcessModel Entity

A ProcessModel entity is the specification of a manufacturing process model that contains a

hierarchical tree structure of Manufacturing Activity entities (i.e. MfgSpec objects). Additional

data about the model is also stored including its name, author, creation date, and last

I modification date.

EXPRESS Specification:

ENTITY ProcessModel;
name : STRING; -- Process Model name
creationDate DateRec; Model creation date
modifyDate : DateRec; -- Model last modify date
author: STRING; -- Model author
topProcess : MfgSpec; -- Top MfgSpec in

ENDENTITY; -- hierarchical tree structure

Attribute definitions:

name: Name of the manufacturing process model.

creationDate: The date that the model was created.

modifyDate: The date that the model was last modified.

3 author: The author of the model.

topProcess: The root or top most process in the process model tree structure.

6.1.1.2 MfgSpec Entity

A MfgSpec entity is the definition of a manufacturing activity which contains

manufacturing process information and its corresponding reasoning logic. If the reasoning

3 logic is satisfied, then the MfgSpec node is included in the overall analysis results. MfgSpec's

are organized as a hierarchical planning system. The hierarchical planning system takes the

form of a tree where each node can have one parent and an optional list of ordered (i.e.

sequential or concurrent) children. Each MfgSpec will also have a reference to its right sibling.

I EXPRESS Specification:

ENTITY MfgSpec;
id: STRING: -- Unitque MfgSpec Identifier
info: Process; -- Manufacturing Process Information

logic: ReasoningLogic; -- Manufacturing Spec Reasoning Logic
ordering: MfgSpecOrder, -- Sequential or Concurrent Ordering
parent: MfgSpec; -- Parents Spec
children: LIST [0:?] OF MfgSpec; --List of Children (Descendants)

I
103I

UNCLASSIFIED
CDRL No. 0002AC-5

rsibling : MfgSpec; -- Right Sibling
entities: LIST [0:?] OF ROSEOBJECT: -- Spec Produced Entities
specCost: Cost; -- Spec Cost

* ENDENTrFY;

Attribute definitions:

id: Unique Identifier of the manufacturing specification.

info: Pointer to the Manufacturing Process Information associated with this manufacturing
specification node.

logic: Reasoning Logic associated with the Manufacturing Process information. The logic is
comprised of design feature entity and attributes being present or of specific values.

ordering: Ordering associated with the children of this specification. The order can be
Sequential or Concurrent.

parent: Parent MfgSpec node associated with this specification.

3 children: List of MfgSpec children associated with this specification.

rsibling: The right sibling associated with this MfgSpec tree node.

entities: List of entities produced by this specification for a particular part under analysis.

specCost: Total Cost of the manufacturing specification.

6.1.1.3 Process Entity

A Process Entity is the definition to support modeling of processes and sub-processes. A

process is an organized sequence of events, either discrete or continuous, that transform raw

materials into a finished product. A sub-process is an organized sequence of events, either

discrete or continuous, that result in a transformation of the product.

3 EXPRESS Specification:

I ENTITY Process;

name: STRING; -- Process Name
desc: STRING; -- Description
resources: LIST [0:?] OF ResourceUtilization; -- Resources (i.e workcenter/workstation)
qualResults: Quality; -- Process Quality
indivRate: Cost; -- Individual Process time and cost

END_-ENTITY;I
3 Attribute definitions:

name: Manufacturing Process Name.

I
104I

I UNCLASSIFIED
CDRL No. 0002AC-5

3 desc: Description of the Manufacturing Process.

resources: List of resources used by the process node as an entity. This list of resources are
associated with the process node.

qualResults: The resulting Process Quality associated with this Process.

indivRate: The individual Time and Cost of the Process.

3 6.1.1.4 Operation Entity

An Operation Entity is the definition to support modeling of operations. An operation is a3 logical grouping of work, confined to one workcenter, and often one machine or machining

cell where a discrete unit of work is performed.

I EXPRESS Specification:

ENTITY Operation

SUBTYPE OF (Process);
optype: LaborClass; -- F, A, I, T
scraprate : LIST [0:?] OF Scrap; -- Scrap rates
rework_rate: LIST [0:?] OF Rework; -- Rework ratesEND-ENTITY;

Attribute definitions:

optype: Type of Operation (i.e. fabrication, assembly, inspection, or test).

scraprate: A list of table entries providing an indexed lookup of scrap rates based on values
of entities and their attributes or an equation that when evaluated will provide the
scrap rate for the operation.

reworkrate: A list of table entries providing an indexed lookup of rework rates based on
values of entities and their attributes or an equation that when evaluated will provide
the rework rate for the operation.

3 6.1.1.5 Step Entity

A Step Entity is the definition to support modeling of steps. A step is an element of work

I inside an operation, analogous to specific actions.

3 EXPRESS Specification:

ENTITY Step
SUBTYPE OF (Process);

stepType: StepTypes; -- Setup or Run Time
ENDENTITY;

I
105I

UNCLASSIFIED

CDRL No. 0002AC-5

Attribute definitions:

stepType: Type of Step (i.e. setup or run time).

6.1.1.6 Scrap Entity

The scrap entity is used to represent scrap rate data (i.e. scrap=l-yield). Scrap is the

I percentage of parts that are lost or rejected at this operation. Scrap data is maintained in a list of

scrap entities. In each entity there is a scrap rule and a corresponding scrap rate. If the scrap

I •rule is satisfied, then the corresponding scrap rate is computed.

EXPRESS Specification:

ENTITY Scrap;
scrapRule : Rules; -- Rule to be evaluated
scrapRate: Equation; -- Scrap that applies if rule is satisfied
scrapPercentage: REAL; -- Actual Calculated operational scrap rate3 ENDENTITY;

3 IAttribute definitions:

scrapRule: The scrap rule to be evaluated.

I scrapRate: The scrap rate equation to apply if the scrapRule is satisfied.

scrapPercentage: Scrap percentage associated with an operation in a particular part.

6.1.1.7 Rework Entity

I The rework entity is used to represent rework rate data. Rework is the percentage of parts

that must be reworked due to this operation. Rework data is maintained in a list of rework

I entities. In each entity there is a rework rule and a corresponding rework rate. If the rework

rule is satisfied, then the corresponding rework rate is computed. There is a list of resources

I associated with the rework which is used to calculate the cost of performing the rework

operaticn.

EXPRESS Specification:

ENTITY Rework;
reworkRule: Rules; -- Rule to be evaluated
reworkRate: Equation; -- Rework that applies if rule is satisfied

I
106I

I UNCLASSIFIED
CDRL No. 0002AC-5

3 resources: LIST [0:?] OF ResourceUtilization; -- Rework resources
reworkPercentage: REAL; -- Calculated operational rework rate
reworkCost: REAL; -- Calculated Rework Cost

END_ENTITY;

Attribute definitions:

reworkRule: The rework rule to be evaluated.

reworkRate: The rework rate equation to apply if the reworkRule is satisfied.

resources: The resources associated with the rework.

reworkPercentage: Rework percentage associated with an operation in a particular part.

3 reworkCost: Rework cost associated with an operation in a particular part.

6.1.1.8 Cost Data

The Cost data types and entities are used to represent calculated analyzer time and cost data.

3 EXPRESS Specification:

ENTITY Cost;
setupTime: REAL; -- Operation Setup Time
runTime: REAL; -- Operation Run Time
idealTime: REAL; - Calculated Ideal Time
idealCost: REAL; -- Calculated Ideal Cost
actualTime: REAL; -- Calculated Actual Estimated Time
actualCost: REAL; -- Calculated Actual Estimated Cost3 ENDENTITY;

3 Attribute definitions:

setupTime: Operation calculated setup time.

3 runTime: Operation calculated run time.

IdealFait: Operation Fabrication, Assembly, Inspection, and Test Cost where no scrap and
rework are included.

ActualFait: Actual Estimated Operation Fabrication, Assembly, Inspection, and Test Cost

1 6.1.1.9 Quality Data

3 The Quality data types and entities are used to represent calculated scrap, rework, and

production quantity.

I
107I

I UNCLASSIFIED
CDRL No. 0002AC-5

3 ,EXPRESS Specification:

ENTITY Quality;
scrapPercent: REAL; -- Scrap Percentage
prodQty: INTEGER; -- Production QTY
reworkPercent: REAL; -- Rework Percentage
reworkCost: REAL; -- Rework Cost

ENDENTITY;

Attribute definitions:

scrapPercent: Calculated scrap percentage.

prodQty: Required production quantity.

reworkPercent: Calculated rework percentage.

reworkCost: Calculated rework cost.

6.1.1.10 ReasoningLogic Entity

3 The ReasoningLogic entity is used to hold the selection rules for the manufacturing activity

node. The rules define the reasons behind why a node should or should not be selected as part

3 of the process to manufacture a part.

EXPRESS Specification:

ENTITY ReasoningLogic;
rules: LIST [0:?] OF Rules; -- List of selection rules

ENDENITITY;

Attribute definitions:

3 rules: List of manufacturing activity selection rules.

6.1.2 EXPRESS-G Schema for Process Model

I The following EXPRESS-G model (figure 6.1-1) represents the Process Model schema:

I
I
I

108I

UNCLASSIFIED
CDRL No. 0002AC-5

selectionzrules.Rules)

rules L[O:?] ?

-ReasoningLogi

_gSpecO¶dr logic rsiblg.

ordering?

HpIe i / chlr enwo rk raeLO:? Stitep pe

P c aresourc es Les_ _[0:? I

! ccostcindiviatel Qao REaAty]"L

,1 ,•l l I Step IHP~
IS.- __ __ optype I rework rate L[0:TI q stepType I

i ~ ~scrap_rate L[O:?]t --- 11_ _ IJ

Scrap Rework -so res L[0:?!

reworkRate
scrapRule scrapRate reworkRul

Sselection esEquation

I.
I~ ~ ~ ---- -- -eeto~ue.ue •-

reworkCost

scrapercenage eworkPercentage

Figure 6.1-1 EXPRESS-G Model of Process Model Schema

6.1.3 EXPRESS Schema for Resource

I The resource schema defines a collection of entities that are used to specify resources. A

resource is any facility, labor, equipment, or consumable material used in the manufacturing

109I _ _

I UNCLASSIFIED

CDRL No. 0002AC-5

3 process. A consumable material is a material that is used to aid the manufacturing process and

is not considered raw material of the product. As defined in the schema a resource is a generic

entity. Specific subtypes of the resource entity are defined to represent facilities, people,

equipment, and consumable materials. The resource schema includes the selectionrules3 schema, as well as some predefined constants and types. The specification of the additional

schema will follow.

I EXPRESS Specification:

INCLUDE 'rules.exp';

SCHEMA resourceschema;

I REFERENCE FROM selectionrules;

CONSTANT

-- Labor Classification Types
FABRICATION: INTEGER := 0;
ASSEMBLY : INTEGER := 1;
INSPECTION : INTEGER := 2;
TEST : INTEGER := 3;

ENDCONSTANT;

TYPE LaborClass = ENUMERATION OF
(FABRICATION, ASSEMBLY, INSPECTION, TEST);

ENDTYPE;

I 6.1.3.1 ResourceUtilization Entity

The ResourceUtilization Entity is used to store which resource(s) are utilized by a process

3 or operation.

EXPRESS Specification:

3 ENTITY ResourceUtilization;
resource: Resource; -- Resource utilized
setupTime: Equation; -- Setup Equation
runTime: Equation; -- RunTime Equation
effRate: OPTIONAL REAL; -- Efficiency Rate
rate: ResourceRates; -- Calculated Resource Rates

* ENDENTITY;

Attribute definitions:

resource: The resource being utilized.

110

I UNCLASSIFIED

CDRL No. 0002AC-5

3 setupTime: The amount of setup time required for the resource.

runTime: The amount of time that the resource is being used while running the operation.

I effRate: This optional attribute provides an efficiency rate factor that when applied to a labor
standard associated with an operation will provide the actual time for the operation.

rate: Calculated Resource Time and Cost Rates.

* 6.1.3.2 Resource Entity

This is the generic resource entity. Each resource is named and can be coded of a certain

3 type. A list of generic attributes can be attached to each resource using the parameter entity.

EXPRESS Specification:I
ENTITY Resource;

resourcename: STRING; -- Resource Name
resourcecode: STRING; -- Resource Code
parameters: LIST [0:?] of Parameter: -- Resource Parameters

ENDENTITY:

Attribute definitions:

resourcename: The name string associated with the resource.

3 resourcecode: A string used to assign a code to the resource.

parameters: A list of generic attributes that can be attached to this resource.

1 6.1.3.3 Parameter Entity

3 The parameter entity is used to define a generic attribute.

EXPRESS Specification:I
ENTITY Parameter:

p-name: STRING; -- Parameter Name
p-value : STRING: -- Parameter Value

ENDENTITY:

I Attribute definitions:

p_name: The name of the parameter.

p_value: The value of the parameter.I
IlllI__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

UNCLASSIFIED
CDRL No. 0002AC-5

6.1.3.4 Labor Entity

The entities in this section define the labor resource. The labor entity is a subtype of the

I generic resource entity.

3= EXPRESS Specification:

ENTITY Labor SUBTYPE OF (Resource);
job code: STRING; -- Labor Job Code
I_type: LaborCla~s; -- Labor Type
rate : REAL; -- Labor Rate3 ENDENTITY;

5 Attribute definitions:

jobcode : A unique identifier associated with the labor.

I Itype: Labor Type (i.e. Fabrication, Assembly, Inspection, Test)

3 rate : The labor rate.

6.1.3.5 Equipment Entity

I The equipment entity is a subtype of the generic resource entity. It is used to specify the

cost of operating the equipment resource during an operation or process.

EXPRESS Specification:

I ENTITY Equipment SUBTYPE OF (Resource);
equipment-category: STRING, -- Equipment Category
cost-perjtimeunit : REAL; -- Cost Per Time UnitI ENDENTITY;

I Attribute definitions:

equipmentcategory: The equipment code or category.

costpertimeunit: The cost of operating the equipment resource per unit of time.

1 6.1.3.6 Facility Entity

The facility entity is a subtype of the generic resource entity. It is used to specify the cost of
using the facility resource during an operation or process.

I
112i

I UNCLASSIFIED

CDRL No. M002AC-5

EXPRESS Specification:

ENTITY facility SUBTYPE OF (Resource);
square-feet-allocated: REAL; -- Square Feet Allocated
cost per-sqft.perime unit : REAL; -- Cost Per Sq Foot Per Time Unit

ENDENTITY;

"Attribute definitions:

3 square feetallocated: The square feet allocated to this particular operation or process.

costper sq_ft_per_timeunit: The cost per square foot per time unit.

I 6.1.3.7 ConsumableMaterial Entity

3 The consumable material entity is a subtype of the generic resource entity. Consumable

materials are those materials used to aid in the manufacturing of a product that are consumed by

3 the process. These materials are not considered as part of the raw materials used in the

manufacture of the product. They only aid in the production process and are consumed a, "ome

3 measurable rate during the process.

EXPRESS Specification:

ENTITY ConsumableMaterial SUBTYPE OF (Resource):
cost-per._unit: REAL; -- Cost Per Unit
resourceRates: LIST [0:?] OF ResourceConsumable; -- list of resource ratesI END-ENTITY;

ENTITY ResourceConsumable;
aresource : Resource; -- Associated Resource
unitsexhaustedper timeunit: REAL; -- Units Exhausted Per Hour

END_-ENTITY;

I Attribute definitions:

3 cost_perunit: The cost of one unit of the consumable material.

resourceRates: The list of resource rates.

aResource: The associated Consumable Resource.

units-exhaustedper_time_unit: Units consumed per unit of time during or by the
operation or process.

1
I

1133

UNCLASSIFIED

CDRL No. 0002AC-5

5 6.1.3.8 ResourceRates Entity

The ResourceRates entity is the entity which holds the calculated time and cost data

I associated with the resources.

* EXPRESS Specification:

ENTITY ResourceRates;
setupTime: REAL, -- setup Time
runTime: REAL; -- run Time
idealTime: REAL; -- ideal Time
idealCost: REAL; -- ideal Cost

ENDENTITY;

Attribute definitions:

3 setupTime: Setup Time associted with the Resources.

runTime: Run Time associated with the Resources.

idealTime: Ideal Time associated with the Resources.

idealCost: Ideal Cost associated with the Resources.

6.1.4 EXPRESS-G Schema for Resource

3 The following EXPRESS-G schema (figure 6.1-2) represents the Resource schema:

I
I
I
I
I
I
I

114I

i UNCLASSIFIED

CDRL No. 0002AC-5
~r setupTimeefat

II
!t_.(selection-rules'Equation •ruT:m ResourceUtilizmatiOreoce ef •a REAL

t- - -- - - - -ir n i e rs uc resource -nam e
I Parameter paramters L[0:?] Resource] STR IN

P_ pvu e~pnm[Ti G [t resource c

I~6 obce Labor]Facility [

rate cost__perý-s-t sunitjee
I cost er amleun~quipent eq p eraen t imegoyou•nsum ble ateri

I -- "- " R-EALr I 'sucREAL e

Spertim e r_unit ý

Figure-ie6. -2ni EXPRESS-G Model of Rsources Sc ema

I6.1.5 EXPRESS Schema frSelection Rules

i This schema defines a grammar format which rules for selection and equations for

evaluation are specified. Rules are tied to process nodes and equations are tied to such entities

i as scrap and rework formulas. Provided below is the complete BNF (Backus-Naur Form)

grammar format for the selection rules and equations which the EXPRESS schema is based on.

I Rule Grammar Formal

<rule> := <expression>, [<rule>]

I <expression> := <equation> I <complexExp> I <simpleExp> I<stringValue>

I

<complexExp> := <equation> <equiv-op> <expression>1

I

I UNCLASSIFIED
CDRL No. 0002 AC-5

S<simpleExp> := <unary-op> <DataDictStr>

<stringValue> := "string"

<equation>:= <term> I <complexEquation>

3 <complexEquation>:= <term> <AddSubOper> <equation>

<AddSubOper>:= + addition
subtraction

<tern>:= <const> I <DataDictStr> I <parenEquation> I <complexTerm>

I <const> := real numbers I integers

<DataDictStr> := <entity> I <entityAttr> I <SpecialFunct>

<parenEquation> := (<equation>)

3 <complexTerm>:= <equation> <MultDivOper> <equation>

<MultDivOper>:= * multiplication* / division

<unary-op> := ! not

<equiv-op> < less than
<= less than equal to
> greater than
>= greater than equal to
= equal to
!= not equal to

Operator Precedence (ordered by most --> least priority)

I Priority Operator Description

I 1 ! logical negation
..

2 * multiplication
/ division (left to right)

3 + addition3 subtraction (left to right)

4 < less than
<= less than equal to
> greater than (left to right)
>= greater than equal to

=equal to

116I!________

I UNCLASSIFIED
CDRL No. 0002AC-5

5 != not equal to

* 6.1.5.1 Constants and Types for Rule Construction

The following is a listing of the EXPRESS source that defines symbolic constants and

aggregate types that are necessary for the specification of the rules BNF:

I EXPRESS Specification•

SCHEMA selectionrules;

CONSTANT
Multiply • STRING:='*';
Divide . STRING:=';
Add :STRING := '+';
Subtract STRING:=-;
UOp STRING:=';

Less . STRING :='<',
LessEqual : STRING -'<=';
Greater STRING :='>,
GreaterEqual STRING: = ,
Equal STRING:==;

NotEqual STRING -=W;

3 LP STRING :='(';
RP STRING :=')';
DQ STRING:=5 ENDCONSTANT;

TYPE DQuote = ENUMERATION OF (DQ);
ENDTYPE;

TYPE LParen = ENUMERATION OF (LP);
ENDTYPE;

3 TYPE RParen = ENUMERATION OF (RP);
ENDTYPE;

TYPE UnaryOp = ENUMERATION OF (UOp);
ENDTYPE:

TYPE Strings = STRING;
ENDTYPE;

TYPE Real-numbers = REAL;
ENDTYPE;

TYPE Integers = INTEGER;
* ENDTYPE;

TYPE
TokenReturnValue = SELECT (Realnumbers. Integers, Strings);

I
117I

I UNCLASSIFIED
CDRL No. 0002AC-5

5 ENDTYPE;

TYPE
Const = SELECT (Real-numbers, Integers);

ENDTYPE;

TYPE Add SubOper = ENUMERATION OF
(Add, Subtract);

ENDTYPE;

TYPE MultDivOper = ENUMERATION OF
(Multiply, Divide);

ENDTYPE;

TYPE Equiv._Op = ENUMERATION OF
(Less, LessEqual, Greater, GreaterEqual, Equal, NotEqual);

END-TYPE;

6.1.5.2 DataDictStr Entity

I The DataDictStr entity is an abstract base class from which two subclasses have been

g created. The first is the EntityName class which holds the name of an entity name. The other is

the EntityAttrName which is used to support the following entity attribute specification:

5 entity [.entity[.entity[.... attr]))

An example of an instance of this might be:

£ line.pointl.x

3 EEXPRESS Specification:

ENTITY DataDictStr; -- abstract base class
ENDENTITY;

ENTITY EntityName
SUBTYPE OF (DataDictStr);

name: STRING;
ENDENTITY;

Attribute definitions:

I name: The name of the entity as it appears in the product data EXPRESS model.

* EXPRESS Specification:

118I

U UNCLASSIFIED
CDRL No. 0002AC-5

3 ENTITY EntityAttrName
SUBTYPE OF (DataDictStr);

entityName: LIST f1:?] OF STRING:
attrName : STRING;

END_ENTITY;

Attribute definitions:

entityName: List of entity name that corresponds to the structure: .ent[.ent[... ent]]. of the
entity as it appears in the product data EXPRESS model.

attrName: The attribute name which the final value is associate with. These attribute name
should be specified as they appear in the product data EXPRESS model.

6.1.5.3 Rules Entities

A complex rule is composed of a list of rules. A rule is an Expressions anded together. The

following BNF segment defines the grammar of the EXPRESS entities:

<Rules> := <Expression>, [<Rules>]

I EXPRESS Specification

3 ENTITY Rules;
expl : LIST [1:?] OF Expression;
moreRulesFiring : BOOLEAN;

ENDENTITY;

1 6.1.5.4 Expression Entities

3 The Expression syntax is represented by the following BNF segment:

<Expression> := <Equation> I <ComplexExp> I <SimpleExp> I <StringValue>

I EXPRESS Specification:

TYPE
Expression = SELECT (Equation, ComplexExp, SimpleExp, StringValue);

END_-TYPE;

ENTITY StringValue;
quotel : DQuote;
valuel : STRING;
quote2 : DQuote;

ENDENTITY;

i ENTITY ComplexExp;

119I

n UNCLASSIFIED
CDRL No. 0002AC-5

3 Equ I Equation;
EquivOpI : EquivOp;
Expi : Expression;3ENDENTITY;

ENTITY SimpleExp;
Notl : Unary_Op;
DataDictVar: DataDictStr;

ENDENTITY;

6.1.5.5 Equation Entities

I The Equation syntax is represented by the following BNF segment:

<Equation>:= <Term> I <ComplexEquation>

EXPRESS Specification:

TYPE

Equation = SELECT (Term, ComplexEquation);3 ENDTYPE;

ENTITY ComplexEquation;
Varl :Term;
Operl : AddSubOper.
Value : Equation;

ENDENTITY;

ENTITY ParenEquatiois;
Lparenthesis : LParen;
Equ : Equation;
Rparenthesis • RParen;

ENDENTiTY;

6.1.5.6 Term Entities

3 The Term syntax is represented by the following BNF segment:

<Term> := <Const> I <DataDictStr> I <ParenEquation> I <ComplexTerm>

I EXPRESS Specification:
TYPE

Term = SELECT (Const, DataDictStr, ParenEquation, ComplexTerm):
ENDTYPE;

ENDSCHEMA.

120

I UNCLASSIFIED

CDRL No. 0002AC-5

g 6.1.5.7 ComplexTerm Entities

The Term syntax is represented by the following BNF segment:

I <ComplexTerm> := <equation> <multdiv-oper> <equation>

EXPRESS Specification:

ENTITY ComplexTerm;
equl : Equation;
Operl MulLDivOper;
equ2 :Equation;

ENDENTITY;
END-SCHEMA;

1
I
I
I
I
I
I
i
!
I

! 121

I ~UNCLASSIFIED
CDRJL No. OO02AC-5

3 6.1.6 EXPRESS-G Schema for Selection Rules

L Integers , Real numbers

L L Const

Term I-

Equ ¶vr C iF -~ l onstant
Prnqton ComplexEquation -2-rAdd_ Sub Oper STRING

L-parent sis 8 elnt 'esis -- --aiue(.)

rLpare Ra1e EquVato ul e_
parn R re ComplexTerm 6 MultDiv -Open

C onstant CosatqlConstant
STRING STRING FSTRING

IExpression StringValueI

5 moreRuleFiring

fl) IT ntity~me I entitytrName

1 ýrocess..modlel.Reasoningl-og~i

g Figure 6.1-3 EXPRESS-G Model of Selection Rules Schema

122

I UNCLASSIFIED

CDRL No. 0002AC-5

* 6.2 Product Model Schema Specification

Product data interpretable by the MO system must be modeled in the EXPRESS language

and stored as STEP objects in a repository that is interfaced to the STEP Data Access Interface

(SDAI). Currently the SDAI only supports a STEP physical file. In the following sections an

EXPRESS schema for a PWB product is presented. This schema was created to demonstrate

the functionality of the MO system. The schema defines lists of entities that model features of a

PWB.

1 6.2.1 Printed Wiring Board Product Data Model

At Raytheon, PWB product data is stored in the RAPIDS (Raytheon's Automated
Placement and Interconnect Design System) database. Two interfaces were developed to3 support the transition of PWB product data to and from STEP physical files.

Generating the STEP physical file is facilitated by the interface RAPIDS to STEP which

Smaps RAPIDS data items into instantiated STEP entities. We created an information model

using the EXPRESS information modeling language. The model was based on the RAPIDS

database. The EXPRESS information model was compiled using the STEP Tools express2c++

compiler which generated a STEP schema and a C++ class library. The class library consists of3 methods for creating and referencing persistent instances of the STEP entities which are stored

in a ROSE database. The STEP schema is used by the STEP Tools STEPfiler for reading and

3 writing the STEP physical file.

The MO system uses the STEP data directly, as well as for information exchange between

the various members of the design team. At Raytheon, the top level team would most likely be

using RAPIDS. This is not a requirement for using the core of the MO system. The only

requirement is that the top level team and the lower level teams are capable of creating,

exchanging and using the STEP physical file.

The Manufacturing Team passes back a consolidated design position to the top level. To aid

in the generation of a consolidated position, conflict resolution and design merging must be

supported. This is done using the STEP Toolkit from STEP Tools Inc. The diff tool reads two

versions of a design and creates a delta file. The difference report generator reads the difference

I
S~123

UNCLASSIFIED

CDRL No. 0002AC-5

file and the original design, and presents each STEP entity and its attributes with the original

values and its change state clearly marked with an asterisks.

Once the conflicts of the Manufacturing team members have been resolved, design versions

are merged using the STEP Tools sed tool. The sed tool read the delta file created by the diff

tool and updates the original design version. This updated version of the design is transferred

back to the top-level product team as the Manufacturing Team's consolidated position.

6.2.1.1 PWB Design Schema

This is the top level schema for the Raytheon PWB EXPRESS model. The model is

primarily derived from the Raytheon's Automated Placement and Interconnect Design System

(RAPIDS) data dictionary. RAPIDS is a concurrent engineering design station for Printed

Wiring Boards. Its database was designed to capture data from many diverse CAE, CAD,

CAM, CAT systems as well as analysis systems for thermal, reliability, critical signal analysis,

and manufacturability. Emphasis was placed on making the model extremely modular and

flexible.

EXPRESS Specification:

INCLUDE rpdtypesexp';
INCLUDE 'rpdheader .exp';

INCLUDE lalias.exp';
INCLUDE annotation.exp';
INCLUDE cari.exp';
INCLUDE 'class.exp,;
INCLUDE comment.exp;
INCLUDE drblock.exp';
INCLUDE gate.exp';
INCLUDE net.exp';
INCLUDE 'metalarea.exp';
INCLUDE lpart. exp';
INCLUDE 'pin.exp';
INCLUDE 'route.exp';
INCLUDE 'via.exp';
INCLUDE 'xref~exp';
INCLUDE 'shape.exp';
INCLUDE 'stackup .exp';
INCLUDE 'model.exp';

SCHEMA rpd_design;

REFERENCE FROM rpdtypesschema;
REFERENCE FROM rpd_header_schema;
REFERENCE FROM aliasschema;
REFERENCE FROM annotationschema;
REFERENCE FROM cari _schema;

I
124I

I UNCLASSIFIED
CDRL No. 0002AC-5

I REFERENCE FROM class_schema;
REFERENCE FROM commentschema;
REFERENCE FROM drblockschema;
REFERENCE FROM gate_schema;
REFERENCE FROM net_schema;
REFERENCE FROM metal_area_schema;
REFERENCE FROM part_schema;

REFERENCE FROM pin_schema;
REFERENCE FROM routeschema;
REFERENCE FROM viaschema;
REFERENCE FROM xrefschema;

REFERENCE FROM modelschema;
REFERENCE FROM shape_schema;

REFERENCE FROM stackup-schema;

ENTITY rpd-design-rec;
aliasheader : header_rec;
aliases : LIST [0:?] of alias_rec; -- list of aliases
annotationheader : headerrec;
annotations LIST [0:?] of annotation_rec; -- list of annotations
cariheader : headerrec;
carirules : LIST [0:?] of carirulerec; -- list of cari rules
classheader : headerrec;
classes : LIST [0:?] of class_rec; -- list of classes
commentheader : headerrec;
comments : LIST [0:?] of comment-rec; -- list of design comments
drblockheader : headerrec;
drblocks : LIST [0:?] of dr_block rec; -- list of design rule blocks
gate-header : header_rec;
gates : LIST [0:?] of gaterec; -- list of gates
netheader : headerrec;
nets : LIST [0:?] of netrec; -- list of nets
part-header : header_rec;
parts : LIST [0:?] of partrec; -- list of parts
pins-header : headerrec;
pins : LIST [0:?] of pinrec; -- list of pins
routeheader : header_rec;
routes : LIST [0:?] of route_rec; -- list of routes
viasheader : headerrec;
vias : LIST [0:?] of via-rec; -- list of vias
xrefheader : header_rec;
xrefs : LIST [0:?] of xrefrec; -- list of xrefs
shapes-header : header_rec;
shapes : LIST [0:?] of pad-shaperec; -- list of pad shapes
stackupsheader : headerrec;
stackups : LIST [0:?] of stackuprec; -- list of pad stackups

models : LIST [0:?] of model_rec; -- list of part mechanical
models
END-ENTITY;

ENDSCHEMA;

I

i 125

UNCLASSIFIED

CDRL No. 0002AC-5

6.2.1.2 PWB Generic Types and Entities

This schema defines types and entities that are used throughout the entire PWB model.

these types and entities are generic and low level and are used as resources by higher level

entities.

EXPRESS Specification:

SCHEMA rpdtypesschema;

TYPE token = STRING; ENDTYPE;

TYPE name-type = STRING; ENDTYPE;

TYPE layer-type = STRING; ENDTYPE;

TYPE keyword = STRING; ENDTYPE;

TYPE dimension = INTEGER; END_TYPE;

TYPE shape-type = STRING; ENDTYPE;

TYPE loading-type = REAL; END_TYPE;

TYPE blocking-type = STRING; END_TYPE:

-- BINARY data type is not currently supported by the EXPRESS compiler
-- Assumming 8 bit characters (256 layers, 1 bit per layer)

TYPE bitmask = ARRAY [0:31] of STRING(l); END-TYPE;

ENTITY time rec;
high INTEGER;
low : INTEGER;

ENDENTITY;

ENTITY rrangerec;
minimum : REAL;
maximum : REAL;

ENDENTITY;

ENTITY irangerec;
minimum : INTEGER;
maximum : INTEGER;

* END_ENTITY;

ENTITY r_spanrec;
minimum : REAL;
maximum : REAL;
span : REAL;

END_ENTITY;

ENTITY i_spanrec;
minimum : INTEGER;
maximum : INTEGER;

* span : INTEGER;

126

UNCLASSIFIED

CDRL No. O002AC-5

ENDENTITY;

ENTITY pin_namerec;
device name-type;
gate name-type;
pin name-type;

ENDENTITY;

ENTITY vertexrec;
x dimension;
y dimension;
radius : dimension;

ENDENTITY;

ENTITY pointrec;
x dimension;
y dimension;

ENDENTITY;

ENTITY loadingrec;
rated : REAL;
derated REAL;
actual REAL;

ENDENTITY;

ENTITY attribute rec;
key : keyword;
value : STRING;

ENDENTITY;

END_SCHEMA;

6.2.1.3 Header Data Schema

This schema defines entities for the unit and scale of other entity instances and the creation,

access, and modification time entities.

EXPRESS Specification:

SCHEMA rpd_header-schema;

REFERENCE FROM rpdtypesschema;

ENTITY version_rec;
name : NAMETYPE;
revision : NAME-TYPE;

ENDENTITY;

ENTITY header_rec;
file-name : NAMETYPE;
version NAMETYPE;
creation TIMEREC;
access : TIMEREC;
modification : TIME_REC;
unit : NAME_TYPE;

127

I UNCLASSIFIED
CDRL No. 0002AC-5

3 scale : REAL;
tool : NAMETYPE;
toolver INTEGER;
toolrev INTEGER;
assembly versionrec;
drawing versionrec;
codeid NAMETYPE; -- Wire Wrap code id
comment STRING;
attribute : LIST OF ATTRIBUTEREC;

ENDENTITY;

ENDSCHEMA;

6.2.1.4 Alias Data Schema

This is the EXPRESS schema for storing data aliases required by limitations of some CAx

I system (e.g. NET names in one system are restricted to a particular length that has been

violated by a system that is upstream in the design process)

EXPRESS Specification:

I SCHEMA aliasschema;

REFERENCE FROM rpdtypes-schema;

ENTITY aliaslisttrec;
rapids-name NAME_TYPE;
aliasname NAME-TYPE;
object-name NAMETYPE;

ENDENTITY;

ENTITY alias-rec;
object : NAMETYPE; -- type of object
property : NAME-TYPE; -- object property
system : NAMETYPE; -- system requiring an alias
aliaslist : LIST [0:?] of aliaslistrec; -- list of aliases
comment : NAME_TYPE;

ENDENTITY;

I ENDSCHEMA;

6.2.1.5 Annotation Data Schema

This is the EXPRESS model for annotation data. Currently, annotation is limited to text.

* EXPRESS Specification:

SCHEMA annotationschema;

REFERENCE FROM rpdtypesschema;

I
1 28I

UNCLASSIFIED
CDRL No. 0002AC-5

ENTITY annotationrec;
text : STRING; -- label
textheight : DIMENSION; -- text size
textwidth : DIMENSION; -- text size
linewidth : DIMENSION; -- width of text line
layer : NAMETYPE; -- text layer

location : POINTREC; -- text location
rotation : INTEGER; -- text rotation
justification : NAME_TYPE; -- text justification

END_ENTITY;

ENDSCHEMA;

6.2.1.6 CARI Data Schema

This Express model is in place for Raytheon legacy data for its proprietary Computer Aided

Routing of Interconnect (CAR1) system. As a generic model this should be eliminated.

EXPRESS Specification:

SCHEMA carischema;

REFERENCE FROM rpdtypes-schema;

ENTITY carirule-rec;
cariid : NAME-TYPE; -- keyword for CARI record
record NAMETYPE; -- CARI record card image
comment NAMETYPE; -- pointer to comment string

END_ENTITY;

END_SCHEMA;

6.2.1.7 Class Data Schema

This EXPRESS model defines data entities for classifying signal nets into groups for

particular design rules.

EXPRESS Specification:

SCHEMA classschema;

REFERENCE FROM rpdtypes-schema;

ENTITY class_rec;
groupname : NAMETYPE; -- class identifier
designrules : NAMETYPE; -- design rules block
signal_list : LIST [0:?] of NAME_TYPE; -- signals in the class
attribute LIST [0:?] of ATTRIBUTEREC; -- user defined attribute
comments : LIST [0:?] of STRING; -- text description

END_ENTITY;

END_SCHEMA;

129I

I UNCLASSIFIED

CDRL No. 0002AC-5

1 6.2.1.8 Comment Data Schema

This schema defines a single entity for a comment a list of comments is kept with each

I PWB design.

* EXPRESS Specification:

3 SCHEMA commentschema;

REFERENCE FROM rpdtypes-schema;

ENTITY commentrec;
comment : NAME-TYPE;

ENDENTITY;

3 ENDSCHEMA;

6.2.1.9 Design Rule Data Schema

I This EXPRESS schema defines entities for design rules. Design rules are stored in named

blocks. Each block except for the GLOBAL block has a Parent name which it inherits from.

EXPRESS Specification:

SCHEMA drblockschema;

REFERENCE FROM rpdtypes-schema;

ENTITY substrateblockrec;
name : NAME_TYPE; -- substrate name
technology : NAME-TYPE; -- technology code
mode : INTEGER; -- code for mode
layers : INTEGER; -- number of layers
pad-stackfile : NAMETYPE; -- RLD file containing pad

I stackups
layer-model LIST [0:?] of LAYER-TYPE; -- layer model names
separation LIST [0:?] of INTEGER; -- spacing between layers
prepreg-mat NAMETYPE; -- prepreg material
substratemat : NAMETYPE; -- substrate material
soldermat : NAME-TYPE; -- soldermask material
attribute LIST [0:?] of ATTRIBUTEREC; -- user defined attributes3 END-ENTITY;

ENTITY via-spec-rec;
via_shape STRING; -- default via shape
via_length DIMENSION; -- default via length
viaheight DIMENSION; -- default via height

END_ENTITY;

3 ENTITY via-step-rec;
viaspacing : DIMENSION; minimum via separation
via_depth : INTEGER; -- maximum via depth

1
130I

I JUNCLASSIFIED
CDRL No. 0002AC-5

firstlayer : INTEGER; -- first stepping layer
pattern : NAMETYPE; -- stepping pattern
direction : REAL; -- direction for first step3 ENDENTITY;

ENTITY min-space-rec;
line to line INTEGER; -- line-to-line spacing
lineto-pad INTEGER; -- line-to-pad spacing
padto-pad : INTEGER; -- pad-to-pad spacing
lineto profile INTEGER; -- line-to-profile spacing
pad-to-profile INTEGER; -- pad-to-profile spacing

ENDENTITY;

ENTITY design-blockrec;
boundary LIST [0:?] of vertexrec; -- design rules boundary
layer-t LAYER-TYPE; -- design rules layer
layerpolarity : NAMETYPE; -- layer polarity codes

x_grid : LIST [0:?] of REAL; -- board routing x grid size
y-grid : LIST [0:?] of REAL; -- board routing y grid size
grid-offset POINTREC; -- routing grid offset
x-viagrid : LIST [0:?] of REAL; -- board via x grid size
y-viagrid LIST [0:?] of REAL; -- board via y grid size
via-grid_offset : POINTREC; -- via grid offset
spacing : min_space-rec; -- feature spacing rules
via-spec : viaspecrec; -- pointer to default via
via_stepping : viasteprec; -- via stepping data
acidtrap INTEGER; -- acid trap angle
attribute LIST [0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

I ENTITY miter rec;
angle : DIMENSION; -- mitering angle
length : IRANGEREC; -- length of miter3 ENDENTITY;

ENTITY terminationrec;
term-type : TOKEN; -- type of termination (INPUT I

OUTPUTI DUAL)
value REAL; -- resistor value in ohms
unterm DIMENSION; -- max unterminated length

ENDENTITY;

ENTITY neckingrec;
linewidth : DIMENSION; -- minimum necked width
length : IRANGEREC; -- length of neck

spacing : DIMENSION; -- unnecked spacing between 2
necks
ENDENTITY;

ENTITY parallelism rec;
parallel-type : NAMETYPE; -- total or individual
plane : NAME_TYPE; -- coplanar or biplanar
separation : DIMENSION; -- separation threshold between

traces

limit : DIMENSION; -- parallel traces length
threshold
ENDENTITY;

I
131I

UNCLASSIFIED
CDRL No. 0002AC-5

ENTITY shieldrec;
shieldtype : NAMETYPE; -- shielding type: microstrip,

stripline,
-- grounded, guarded, shielded

signal : NAME_TYPE; -- signal shield connected
coverwidth : DIMENSION; -- cover width for shield
stripwidth : DIMENSION; -- stripline width
isolation : DIMENSION; -- isolation dist
postspacing : DIMENSION; -- via post space distance
poststackup: NAME_TYPE; -- stackup for vias for posts

ENDENTITY;

ENTITY signal-blockrec;
layers : bitmask; -- eligible routing layers
layert : LIST [0:?] of LAYER_TYPE; -- list of layer types
signaltype : NAME_TYPE; -- signal type: power, ground,

ecl, etc.

linewidth : DIMENSION; -- default wire line width
line_shape : NAMETYPE; -- line aperture-shape
maxlength : DIMENSION; -- max signal conductor length
minlength : DIMENSION; -- min signal conductor lengtn
stub : DIMENSION; -- max stub length
netorder : NAME-TYPE; -- stringing algorithm: MST,

DAISY, STAR, WIREWRAP
routebias : REAL; -- routing priority
clearance : DIMENSION; -- net isolation distance
place-bias : REAL; placement priority
via-type : NAME-TYPE; -- pad stack for via
transmission : DIMENSION; -max transmission length
span : DIMENSION; driver span
viacount : INTEGER; -- maximum # of vias
tolerance : DIMENSION; -- matched length tolerance

miter : miter_rec; -- corner mitering rules
termination : termination-rec; -- terminatin rules
necking : neckingrec; -- necking rules
parallelism : LIST [0:?] of parallelism_rec; -- parallelism rules
delayrule : r_span-rec; -- propagation delay rules
shielddata : shieldrec; -- shielding rules
attribute : LIST [0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

3 ENTITY layer-block rec;
layer-t : LAYER-TYPE; -- design rules layer
cu-weight : REAL; -- copper weight
thickness : REAL; -- thickness of metal
impedance : INTEGER; -- layer impedence
purpose : NAMETYPE; -- user define purpose
attribute : LIST (0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENTITY deviceblock-rec;
x-grid : LIST [0:?] of REAL; -- placement grid size
y_grid : LIST [0:?] of REAL; -- placement grid size
grid-offset : POINTREC; -- placement grid offset

layer-name : LAYERTYPE; -- component placement layer
viaflag : BOOLEAN; -- via inhibit flag
locationset : NAMETYPE; -- placement location set
autoinsert : NAMETYPE; -- auto insertion code

i
132I

I UNCLASSIFIED
CDRL No. 0002AC-5

technology : NAMETYPE; -- device technology
devicebias : REAL; -- device affinitity
thermalbias : REAL; -- thermal affinitity
spacerule LIST [0:?] OF NAME-TYPE; -- placement spaceing rule
decoupling DIMENSION; -- decoupling distance
overlap : LIST [0:?] OF NAMETYPE; -- placement overlap rule

wire-bond : IRANGEREC; -- wire bonding device rules
aspect : R_RANGE_REC; -- aspect ratio for resist
heatsink NAME-TYPE; -- heat sink id
attribute : LIST [0:?] of ATTRIBUTEREC; -- user defined attributes3 END-ENTITY;

ENTITY metalarea_block_rec;
pin-clearance : DIMENSION; -- metal to pin clearance
viaclearance : DIMENSION; -- metal to via clearance
wire-clearance : DIMENSION; -- metal to wire clearance
conn-number : INTEGER; -- connections to each pin

conn width : DIMENSION; -- width of pin connections
cutout-flag : BOOLEAN; -- flag to generate cutoutssuppressflag : BOOLEAN; -- unused pad suppression
show-connect BOOLEAN; -- show pad connections

defaultdrill DIMENSION; -- default drill size
attribute : LIST [0:?] of ATTRIBUTE_REC; -- user defined attributes

END-ENTITY;

ENTITY drblockrec;
blockname NAME-TYPE; -- name of design rule block
parentname NAME_TYPE; -- name of parent design rule

block
substrateblock : substrateblock_rec; -- substrate rules
design_block Idesign_blockrec; design rules
signal block : signal blockrec; -- signal rules

layer-block layer-block rec; -- level rules
deviceblock deviceblockrec; -- signal rules
metalareablock : metalareablock_rec; -- metal area rules

ENDENTITY;

3 END-SCHEMA;

6.2.1.10 Gate Data Schema

This schema defines entities for device gates.

3 EXPRESS Specification-

3 SCHEMA gate_schema;

REFERENCE FROM rpdtypes-schema;

3 ENTITY gatepackage-rec;
component : NAMETYPE; -- symbolic component name
gateno : NAMETYPE; -- element number3 END-ENTITY;

ENTITY sheetrec;
num : NAME_TYPE; -- sheet number

133I

I UNCLASSIFIED
CDRL No. O02AC-5

x_location REAL; -- location on sheet
y-location REAL; -- location on sheet

ENDENTITY;

I ENTITY gatenet_rec;
logicpin : NAME-TYPE; -- logical pin name
signal : NAMETYPE; -- default net name

I ENDENTITY;

ENTITY gaterec;
instance NAME-TYPE; -- gate name (handle)
package gatepackage rec; -- package reference
old package : gatepackagerec; -- original package ref
gate-swap-code : NAME_TYPE; -- swap group name
swap-inhibit : INTEGER; -- gate/pin swapability
gate-count : INTEGER; -- identical gate/device
sheet : sheetrec; -- schematic location

comment : NAME_TYPE; -- pointer to comment string
signal-pap : LIST [0:?] of gate_net_rec; -- list of pins and nets
old-signal_map : LIST [0:?] of gate-net-rec; -- list of pins and nets
attribute : LIST [0:?] of attributerec; -- user defined attribute

ENDENTITY;

ENDSCHEmA;

6.2.1.11 Net Data Schema

This schema defines entities for net signals.

EXPRESS Specification:

I SCHEMA net_schema;

REFERENCE FROM rpdtypesschema;
REFERENCE FROM pinschema;
REFERENCE FROM viaschema;
REFERENCE FROM routeschema;

REFERENCE FROM metalarea schema;
REFERENCE FROM drblockschema;

ENTITY ww-pindatarec;
method : NAMETYPE; -- installation method
code : NAMETYPE; -- wire type code
sequence : INTEGER; -- wrap sequence
group : NAME_TYPE; -- wire group
length : DIMENSION; -- xs wire length
findno NAMETYPE; -

instpath : STRING; -- installation path3 ENDENTITY;

ENTITY wwdata_rec;
runnumber : INTEGER; -- wire wrap run number
func : NAME_TYPE; -- net function

ENDENTITY;

ENTITY wwpin-pairrec;

134I

UNCLASSIFIED
CDRL No. 0002AC-5

method : NAMETYPE; -- installation method
code : NAMETYPE; -- wire type code
sequence : INTEGER; -- wrap sequence
group NAME_TYPE; -- wire group
length INTEGER; -- xs wire length
findno NAMETYPE;
inst-path : NAME-TYPE; -- installation path

* ENDENTITY;

ENTITY pin-pairrec;
t-pin name pinname_rec; -- to pin name
f-pin name pin-name_rec; -- from pin name
t-pin pin-rec; -- to pin object
f-pin pin-rec; -- from pin object
pp-index : INTEGER; -- index to route object
pp : route-rec; -- pointer to route object
wwpins : ww-pinpairrec; -- wire wrap pin pair data

ENDENTITY;

ENTITY netrec;
name : NAME_TYPE; -- name of net
designrules NAMETYPE; -- design rules block
signaltype NAME_TYPE; -- signal type
pin-pairs : LIST [0:?] OF pin_pair-rec; -- list of pin pairs
ww_data : ww_datarec; -- wire wrap data
layer : BITMASK; -- eligible routing layers
layert : LIST [0:?] OF NAME_TYPE; -- list of layer types
linewidth DIMENSION; -- line width for routing
lineshape NAME-TYPE; -- line aperture-shape
maxlength DIMENSION; -- minimum total wire

length
minlength DIMENSION; -- maximum total wire

length
stub : DIMENSION; -- maximum stub length
netorder NAMETYPE; -- stringing algorithm
clearance DIMENSION; -- net isolation distance
routebias REAL; -- routing priority
placebias REAL; -- placement priority
via-type : NAMETYPE; -- absolute pin(via) type
transmission : DIMENSION; -- transmission length
span : DIMENSION; -- driver span
viacount : INTEGER; -- maximum # of vias
miter : miterrec; -- corner mitering rules
termination : terminationrec; -- terminatin rules
necking : necking rec; -- necking rules
parallelism : LIST [0:?] of parallelism-rec; -- parallelism rules
shield : shield-rec; -- shielding rules
pinnames : LIST [0:?] of pinnamerec; -- pin names in the net
pins : LIST [0:?] OF pinrec; -- pin records in the net
routes : LIST [0:?] of route_rec; -- list of net routes
vias : LIST [0:?] of viarec; -- list of net vias
metalareas : LIST [0:?] of metal_arearec; -- list of net metal areas
delayrule r_spanrec; -- propagation delay rules
comment : NAME_TYPE; -- comment string
attribute : LIST [0:?] OF ATTRIBUTEREC; -- user defined attribute

* ENDENTITY;

ENDSCHEMA;

I
135

_ _ _ _ _ _

3 UNCLASSIFIED

CDRL No. 0002AC-5

3 6.2.1.12 Metal Area Data Schema

This schema defines entities for metal areas (areas of a PWB flooded or meshed with

I conductor material).

3 EEXPRESS Specification:

SCHEMA metalarea schema;

REFERENCE FROM rpdtypes-schema;
REFERENCE FROM drblockschema;

3 ENTITY cutout_rec;
cutout_type : NAMETYPE; -- type of cutout
points : LIST [0:?] of POINTREC; -- cutout description3 ENDENTITY;

ENTITY metalarea-rec;
signal : NAMETYPE;
metalareatype : NAME_TYPE; -- type of metal area
style : NAMETYPE; -- style of metal area
design rules : drblock-rec; -- name of design rule block
aperture : DIMENSION; -- apperature for photoplot
spacing DIMENSION; -- line spacing in photoplot
layer : INTEGER; -- layer for metal area
cutoutshape : NAMETYPE; -- shape for pin cutouts
origin : POINTREC; -- boundary origin
boundary : LIST [0:?] of POINTREC; -- boundary description
usercutouts : LIST [0:?] of cutout_rec; -- defined cutouts
autocutouts : LIST [0:?] of cutoutrec; -- generated cutouts
comment : NAMETYPE; -- comment string
attribute : LIST [0:?] of ATTRIBUTEREC; -- user defined attribute

END-ENTITY ;

3 ENDSCHEMA;

6.2.1.13 Part Data Schema

This schema defines the electrical characteristics of the PWB components.

3 EXPRESS Specification:

3 SCHEMA part_schema;

REFERENCE FROM rpdtypes-schema;

ENTITY pin-maprec;
logicpin : NAMETYPE; -- logical pin name
componentpin : NAMETYPE; -- component pin name
pin-swapcode : NAMETYPE; -- pin swap group

END_ENTITY;

ENTITY elementrec;

i
136I

I UNCLASSIFIED
CDRL No. 0002AC-5

3 elemno : NAMETYPE; -- element number
elemswap : NAMETYPE; -- element Swap Code
pin-map : LIST [0:?] OF pin-map-rec; -- element to device pin map3 END-ENTITY;

ENTITY geodata_rec;
rev NAME_TYPE; -- pin data rev
modn NAME_TYPE; -- pin data mod

clearz : DIMENSION; -- component CLEARZ
height : DIMENSION; -- component HEIGHT
length DIMENSION; -- component LENGTH
width DIMENSION; -- clib component WIDTH
hsx DIMENSION; -- clib HSX pin spacing
hsy DIMENSION; -- clib HSY pin spacing
mass REAL; -- component MASS
pinoffset : pointrec; -- pin offset

ENDENTITY;

ENTITY op_datarec;
rev NAME_TYPE; -- pin data rev
modn NAME_TYPE; -- pin data mod
power-dissip : REAL; -- power dissipation
maxpower-dissip : REAL; -- max power dissipation
peakpower REAL; -- peak power
min-power REAL; -- min power3 ENDENTITY;

ENTITY thermdatarec;
rev : NAMETYPE; -- pin data rev
modn NAME_TYPE; -- pin data mod

emit REAL;
rsbtm : REAL;
rsjb REAL;
rsjc REAL;
rstop : REAL;
spht REAL;
jtm : REAL;

thermal-type code : INTEGER;
thermal_type : NAME_TYPE;

ENDENTITY;

3 ENTITY pintime_rec;
min : REAL;
typical : REAL;
max : REAL;

ENDENTITY;

ENTITY input-current rec;
iil REAL; -- low current
iih : REAL; -- high current

END_ENTITY;

3 ENTITY input-voltagerec;
vil : REAL; -- low voltage
vih REAL; -- high voltage1 ENDENTITY;

ENTITY output-current_rec;

1
137I

UNCLASSIFIED
CDRL No. 0002AC-5

Sol REAL;
ioh REAL;
iozl : REAL;
iozh : REAL;

ENDENTITY;

ENTITY output-voltage-rec;
vol : REAL; -- low voltagevoh : REAL; -- high voltagevol_min REAL; -- min voltage

voh_max REAL; -- max voltage3 END-ENTITY;

ENTITY bipinrec;
input-current input-currentrec;
inputvoltage inputvoltagerec;
output-current :outputcurrent-rec;
output-voltage :output-voltage-rec;

_ENDENTITY;

ENTITY inpinrec;
input-current : input-currentrec;
input-voltage : input voltagerec;

ENDENTITY;

ENTITY ou-pinrec;
ouconfig-code : INTEGER;
ou_config : NAMETYPE;
output-current : output-current-rec;
outputvoltage : output-voltage-rec;

ENDENTITY;

ENTITY pindatarec;
rev NAME_TYPE; -- pin data rev
modn NAMETYPE; -- pin data mod
pin-number : NAMETYPE; -- component pin number
pinname : NAMETYPE; component pin name
pin-swap-code : NAMETYPE; -- pin swap group name
pin-offset : POINT REC; -- center of the pin relative to

the origin of the device
capacitance : REAL;
fall-time pintime_rec; -- rise time
rise-time pintime_rec; -- fall time
pin-type NAME-TYPE; -- B, I, 0
bi-pin bi_pin-rec; -- bidirectional pin data
in-pin inpinrec; -- input pin data
ou-pin oupin rec; -- output pin data

ENDENTITY;

ENTITY prop-delay rec;
rev : NAMETYPE; pin data rev
modn : NAMETYPE; -- pin data mod
pin-name_start : NAMETYPE;
pin-name_end : NAMETYPE;
pinnum_start : NAMETYPE;
pin-numend : NAMETYPE;
phl REAL;
plh REAL;

I
138I

I UNCLASSIFIED
CDRL No. 0002AC-5

5 unateness : NAME-TYPE;
ENDENTITY;

ENTITY partrec;
part : NAMETYPE; -- part name
technology NAME-TYPE; -- device technology
spice-model NAMETYPE; -- spice model for the device
heat_flag BOOLEAN; -- heat sensitivity flag
statflag BOOLEAN; -- static sensitivity flag
polar_flag BOOLEAN; -- polar component flag
part-type NAME-TYPE; -- component type
partclass NAMETYPE; -- component class
Jescription STRING; -- component description
mil-spec : NAME_TYPE; -- component mil-spec name
findno : NAMETYPE; -- component find number
tolerance : NAME-TYPE; -- component tolerance
value : NAMETYPE; -- component value

mechname : NAME-TYPE; -- mechanical name
manufacturer : NAMETYPE; -- part manufacturer
elements LIST [0:?] OF element rec; -- list of elements in part
geodata geo-datarec; -- geometry data
opdata op_datarec;
thermdata : thermdata rec; -- thermal data
pin-data : LIST [0:?] OF pindatarec; -- pin data
delay_data : LIST [0:?] OF propdelay-rec; -- delay data
comment : NAMETYPE; -- comment string
attribute : LIST [0:?] OF ATTRIBUTE_REC; -- user defined attributes

ENDENTITY;

ENDSCHEMA;

6.2.1.14 Pin Data Schema

I This schema defines entities for component pins instantiated on the PWB.

3 •EXPRESS Specification:

3 SCHEMA pin_schema;

REFERENCE FROM rpdtypesschema;

TYPE function-type = STRING(l) FIXED; ENDTYPE;
-- I for input or source
-- 0 output or sink

-- B bidirectional
-- T pin on a terminating resistor

ENTITY load data_rec;
power : LOADING-TYPE; -- power loading data
voltage : LOADING-TYPE; -- voltage loading data
current LOADING-TYPE; -- current loading data
temperature : LOADING_TYPE; -- temperature loading data3 ENDENTITY;

ENTITY pinrec;
pin : NAMETYPE; -- pin name

139I _ _ _ _ __ _ _ _ _ _

I UNCLASSIFIED
CDRL No. 0002AC-5

signal NAMETYPE; -- signal name

offset POINTREC; -- pin offset from origin

location POINTREC; -- pin location on board

rotation REAL; -- pin rotation in degrees
range : BITMASK; -- pin depth
suppression : BITMASK; -- pad suppression mask

func : FUNCTIONTYPE; -- pin function code
stepping REAL; -- first stepping direction
pintype NAME_TYPE; -- absolute pin type
swap-inhibit : INTEGER; -- gate/pin swapability
loaddata : load data-rec; -- pin loading data
comment : NAMETYPE; comment string
attribute : LIST [0:?] of ATTRIBUTEREC;-- user defined attributes

ENDENTITY;

3 END_SCHEMA;

1 6.2.1.15 Conductor Routing Data Schema

This schema defines entities for conductor routes of net Nignals.

I EXPRESS Specification:

3 SCHEMA routeschema;

REFERENCE FROM rpdtypes-schema;
REFERENCE FROM netschema;
REFERENCE FROM pinschema;

ENTITY segment-rec;
x : DIMENSION; -- x coord of point on the path
y DIMENSION; -- y coord of point on the path
radius : INTEGER; -- for circular segment

segmentwidth : DIMENSION; -- The width of the segment
* ENDENTITY;

ENTITY wwroutedatarec;
revision NAME-TYPE; -- wire revision

sequence INTEGER; -- wire wrap sequence
bends : LIST [0:?] of POINTREC; -- wire wrap bend points

ENDENTITY;

3 ENTITY routerec;
signal : NAME_TYPE; -- associated signal name

routetype : NAMETYPE; -- type of connecti-n
status : NAMETYPE; -- path status

target-name : in-nvne_rec; -- assigned target pin name
object name pin-namerec; -- assigned object pin name
targetpin : pin rec; -- assigned target pin
objectpin pin-rec; -- assigned object pin
targetioc POINTREC; -- coordinates of the target
object loc POINTREC; -- coordinates of the object
protect : BOOLEAN; -- path protection flag
targetlayer : INTEGER; -- assigned starting layer
objectlayer INTEGER; -- assigned ending layer

path : LIST [0:?] OF segmentrec; -- list of path s~gmenL•

140I__ _ _ _ _ _ _ _

UNCLASSIFIED
CDRL No. 0002AC-5

shieldid : INTEGER; -- code for linking shie+uing
pinpairindex : INTEGER; -- link to pin-pair data
pin-pair : pinpairrec; -- link to pin-pair data
wwdata wwroutedatarec; -- wire wrapping data
comment NAME_TYPE;

ENDENTITY;

I ENDSCHEMA;

6.2.1.16 Via Data Schema

1 This schema defines entities for signal net vias.

EXPRESS Specification:

5 SCHEMA via_schema;

REFERENCE FROM rpdtypes-schema;
REFERENCE FROM drblockschema;3 REFERENCE FROM netschema;

ENTITY via rec;
signal : NAMETYPE; -- name of signal net
location POINTREC; -- board coordinates
rotation REAL; -- via rotation in degrees
range : BITMASK; -- pin depth
suppression : BITMASK; -- pad suppression mask
via-type : NAMETYPE; -- absolute via type
viause : NAME_TYPE; -- special via use
shieldid : INTEGER; -- code for linking shielding
shield shield rec; --

comment NAMETYPE; -- comment string
attribute : LIST [0:?] of ATTRIBUTEREC; -- user defined attributes

ENDENTITY;

ENDSCHEMA;

3 6.2.1.17 Library Cross Reference Data Schema

This schema defines entities for the device cross references.

I EXPRESS Specification:

U SCHEMA xrefschema;

REFERENCE FROM rpdtypes-schema;
REFERENCE FROM pinschema;

ENTITY xrefrec;
symbolic : NAME-TYPE; -- symbolic name
old-symbolic : NAMETYPE; -- old symbolic name
model : NAMETYPE; -- mechanical model name
location : POINTREC; -- board location

I
141I _

I UNCLASSIFIED
CDRL No. O02AC-5

mirror : INTEGER; -- mirror flag
rotation : REAL; -- rotation flag
symbolic-flag : BOOLEAN; -- symbolic pin names used flag
external : BOOLEAN; -- connector flag

usa-device : NAME-TYPE; -- USA device names
physical NAMETYPE; -- CLIB device name
raytheon NAMETYPE; -- raytheon part number
designrules : NAMETYPE; -- design rules block
layer : NAME_TYPE; -- component placement layer
via_flag : BOOLEAN; -- inhibit via under device
locationset NAME_TYPE; -- placement location set
autoinsert NAMETYPE; -- auto insertion code
swap-inhibit INTEGER; -- gate/pin swapability code
fix : BOOLEAN; -- fixed placement flag
devicebias REAL; -- device affinitity
thermalbias REAL; -- thermal affinity
coupling : LIST [0:?] of NAMETYPE; -- placement coupled devices
decoupling INTEGER; -- decoupling distance
spacerule : LIST [0:?] of NAMETYPE; -- placement spaceing rule
overlap : LIST [0:?] of NAMETYPE; -- placement overlap rule
heatsink : NAME-TYPE; -- heat sink name
loaddata : loaddata_rec; -- loading data
comment : NAME-TYPE; -- comment stri-c,
attribute : LIST [0:?] of attribute_rec; -- user define, .-. _ibutes

ENDENTITY;

3 ENDSCHEMA;

1 6.2.2 PWB Design Data EXPRESS-G Model

etalareashem aliascma

I - .- c s ~ cMa -. - net-schem a [- -

--.•model schema •..-1.• carihna -

3 stackup-schma .. c entschem

I _dtyps-schema

Figure 6.2-1 PWB Schema Level EXPRESS-G Model

I
142I

SLNCLASSWrfTD

CDRL No. 0002: -

6.2.3 Electronic Component Library Data Model

* 6.2.3.1 Component Model Data Schema

This schema defines entities for modeling PWB components.

I EXPRESS Specification:

SCHEMA modelschema;

REFERENCE FROM rpdtypes-schema;
REFERENCE FROM rpdheader_schema;REFERENCE FROM stackupschema;

ENTITY revdatarec;
issuedate : NAME_TYPE; -- date of issue
revision : NAMETYPE; -- revision number
eco : NAMETYPE; -- latest eco number
ecodate : NAMETYPE; -- date of latest eco

END-ENTITY;

ENTITY dev-origin-rec;
origin-type : NAMETYPE; -- origin typescenter POINTREC; -- device center

offset POINTREC; -- placement offset
mirror INTEGER; -- reflection code

ENDENTITY;

ENTITY label_rec;
text : STRING; -- label text
height : DIMENSION; -- text size
width : DIMENSION; -- text size
location : POINTREC; -- text location
rotation : INTEGER; -- text rotation
linewidth : DIMENSION; -- width of text line
justify : NAME-TYPE; -- text justification

* END-ENTITY;

ENTITY boundary-rec;
boundarytype : NAME_TYPE; -- type of boundary
shape : NAME_TYPE; -- boundary outline shape
outline : LIST [0:?] of VERTEXREC; -- boundary outline vertices
layers : LIST [0:?] of NAME_TYPE; -- boundary layers

* ENDENTITY;

ENTITY obstructionrec;
obstruction-type : NAMETYPE; -- type of obstruction
shape : SHAPE_TYPE; -- outline shape
outline : LIST [0:?] of VERTEXREC; -- pad outline
layers : LIST [0:?] of LAYER_TYPE; -- pad layers
blocking : LIST [0:?] of BLOCKINGTYPE; -- blocking codes

ENDENTITY;

ENTITY devicerec;

143I

U UNCLASSIFIED
CDRL No. 0002AC-5

symbolic NAME-TYPE; -- symbolic name
physical NAME_TYPE; -- physical name
model : NAMETYPE; -- mechanical model name
location POINTREC; -- location on board
rotation REAL; -- rotation in degrees
mirror : INTEGER; -- mirror flag

ENDENTITY;

ENTITY devpinrec;
physical : STRING; -- physical pin name (must be

string of integers)
symbolic NAME-TYPE; -- symbolic pin name
location POINTREC; -- pin location
drill : DIMENSION; -- default drill size
stackup-name : NAMETYPE; -- pad stackup name
stackup : STACKUPREC; -- pad stackup record
rotation : REAL; -- stackup rotation
offset : POINTREC; -- stackup offset
stepping : INTEGER; -- first stepping direction

ENDENTITY;

ENTITY thermalrec;
thermal-type : NAMETYPE; -- type of thermal relief
width : DIMENSION; -- line width
spacing : DIMENSION; -- line spacing
stackup name : NAME_TYPE; -- stackup name
stackup : STACKUPREC; -- stackup record

ENDENTITY;

ENTITY packagerec;
package-type : NAMETYPE; -- package type
category : NAMETYPE; -- package category

orientation : NAMETYPE; -- package orientation
distance : DIMENSION; -- pin row separation
depth DIMENSION; -- package depth
height DIMENSION; -- package height
width DIMENSION; -- package width
lead : DIMENSION; -- package lead diameter
fix : BOOLEAN; -- fixed device flag
body-diameter : DIMENSION; -- package body diameter
span : DIMENSION; -- package pin span
insert : NAMETYPE; -- package insertion code
mechanical : BOOLEAN; -- mechanical device flag

auto ww offset : POINTREC; -- automatic wirewrap offset
autoww trp : INTEGER; -- automatic wirewrap initial trp
semi ww offset . POINTREC; -- semiautomatic wirewrap offset
semi ww trp : INTEGER; -- semiautomatic wirewrap initial

trp
ENDENTITY;

ENTITY model_rec;
header header rec; -- pointer to header record
mm_name NAMETYPE; -- mechanical model name
rev_data revdatarec; -- revision data
origin devorigin-rec; -- origin data
package package-rec; -- packafing data
labels LIST [0:?] of label_rec; -- list of labels
boundaries : LIST [0:?] of boundaryrec; -- list of boundaries

I
'44

_ _ _ _ _ _

I UNCLASSIFIED
CDRL No. 0002AC-5

obstructions LIST [0:?] of obstructionrec; -- list of obstructions
devices : LIST [0:?] of device-rec; -- list of devices
pins : LIST [0:?] of devpinrec; -- list of pins

thermals LIST [0:?] of thermal rec; -- list of thermal reliefs
comments : LIST [0:?] of STRING; -- list of comments
attribute LIST [0:?] of attributerec; -- list of user defined

attributes
ENDENTITY;

ENDSCHEMA;

3 6.2.3.2 Pad Stack Data Schema

I This schema defines entities for pin and via pad stackups. Various pad shapes for each

layer are combined. The layer assignments are then combined to form the padstack.

3 .EXPRESS Specification:

3 SCHEMA stackup-schema;

REFERENCE FROM rpdtypes-schema;
REFERENCE FROM shapeschema;

I ENTITY pad_rec;
pad-name NAMETYPE; -- shape name
pad-shape PADSHAPEREC; -- pad shapes
func : NAMETYPE; -- pad function

END-ENTITY;

ENTITY padstack-rec;
model : NAMETYPE; -- layer modeloffset : POINTREC; -- pad offset

pad_list : LIST [0:?] of padrec; -- padnames5• ENDENTITY;

ENTITY stackup-rec;
stackname : NAMETYPE; -- name of stackup
pad_stack LIST [0:?] of padstack_rec; -- pad stackups
drill : INTEGER; -- default drill size
comments : LIST [0:?] of STRING; -- list of comments3 ENDENTITY;

ENDSCHEMA;

1 6.2.3.3 Pad Shape Data Schema

This schema defines entities for pin and via pad shapes.

EXPRESS Specification:

SCHEMA shape-schema;

145I!_______________

I UNCLASSIRED

CDPL No. OW2AC-5

REFERENCE FROM rpdtypes-schema;

ENTITY shape-rec;
shape : NAMETYPE; -- shape type
width : DIMENSION; -- aperature width
outline : LIST [0:?] of VERTEX_REC; -- shape description

ENDENTITY;

ENTITY pad-shape-rec;
name NAMETYPE; -- shape name
pads : LIST [0:?] of shaperec; -- pad shapes

ENDENTITY;

ENDSCHEMA;

6.2.4 Electronic Component Library Data EXPRESS-G Model
I 1 x•ef shema

I I ~elhema[iPart-shema I E
II

stackup schema sha p -shema
gat e-hema

pi-chema via schema

3Figure 6.2-2 Component Data EXPRESS-G Schema

I
I
I
I
!
I

l 146

I

1 7. Notes

1 7.1 Acronyms
CAEO Computer Aided Engineering Operations

CDRL Contract Data Requirements List

1 CERC Concurrent Engineering Research Center

CM Communications Manager

I DARPA Defense Advanced Research Projects Agency

DBMS Database Management System

DFMA Design for Manufacturing and Assembly

IDICE DARPA Initiative In Concurrent Engineering

ISO International Standards Organization

3 MEL Mechanical Engineering Laboratory

MO Manufacturing Optimization

MSD Missile Systems Division

5MSL Missile Systems Laboratories

OOD Object Oriented Design

3 OSF Open Software Foundation

PCB Project Coordination Board

I PWA Printed Wiring Assembly

3 PWB Printed Wiring Board

PWF Printed Wiring Fabrication

3 RAPIDS Raytheon Automated Placement and Interconnect Design System

RM Requirements Manager

ROSE Rensselaer Object System For Engineering

5 SDAI STEP Data Access Interface

STEP Standard for Exchange of Product Model Datai
I

I

I Distribution List
DPRO-Raytheon
C/O Raytheon Company
Spencer Lab., Wayside Ave.3 (one copy of each report)

Defense Advanced Research Projects Agency
ATTN: Defense Sciences Office; Dr. H. Lee Buchanan
Virginia Square Plaza
3701 N. Fairfax Drive
Arlington, VA. 22203-17143 (one copy of each report)

Defense Advanced Research Projects Agency
AATTN: Electronic Systems Technology Office; Capt. Nicholas J. Naclerio, USAF
Virginia Square Plaza
3701 N. Fairfax Drive
Arlington, VA. 22203-17143 (one copy of each report)

Defense Advanced Research Projects Agency
ATTN: Contracts Management Office; Mr. Donald C. Sharkus
Virginia Square Plaza
3701 N. Fairfax Drive
Arlington, VA. 22203-1714
(one copy of each report)

Defense Technical Information Center
Building 5, Cameron Station
A'ITN: Selections
Alexandria, VA 223043(two copies of each report)

!
!
!
I
I
S
! _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

